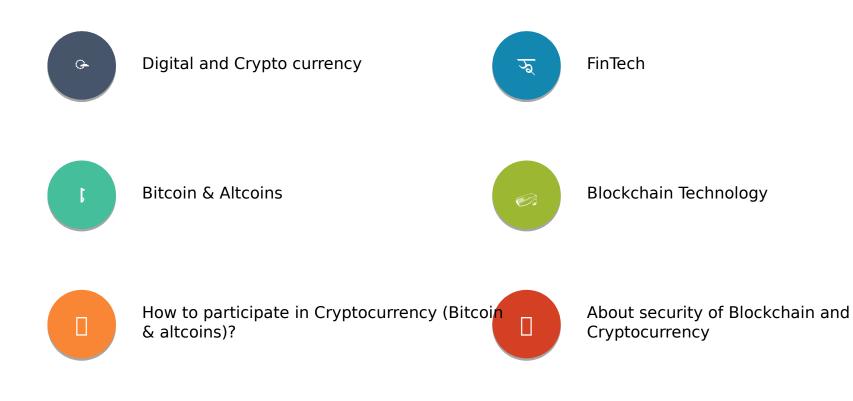


МОНГОЛ УЛСЫН ШИНЖЛЭХ УХААН ТЕХНОЛОГИЙН ИХ СУРГУУЛЬ

MONGOLIAN UNIVERSITY OF SCIENCE AND TECHNOLOGY

Mongolian Cyber Emergency Response Team / Coordination Center

BLOCKCHAIN TECHNOLOGY & CRYPTOCURRENCY

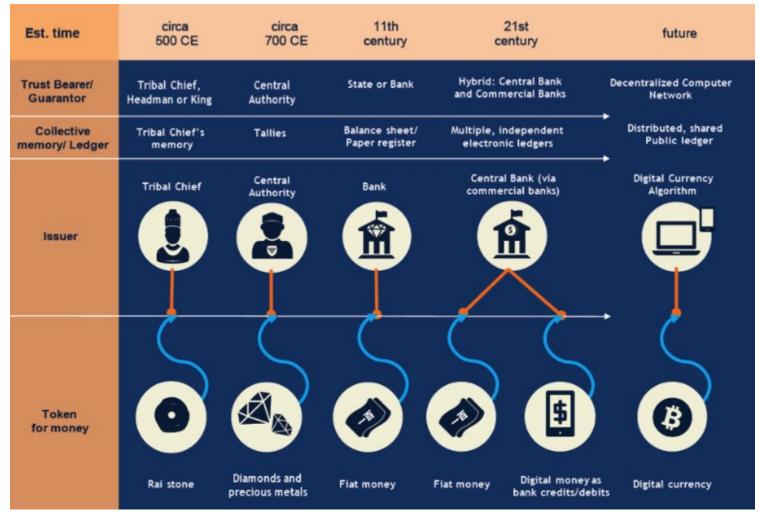

MNSEC-2017

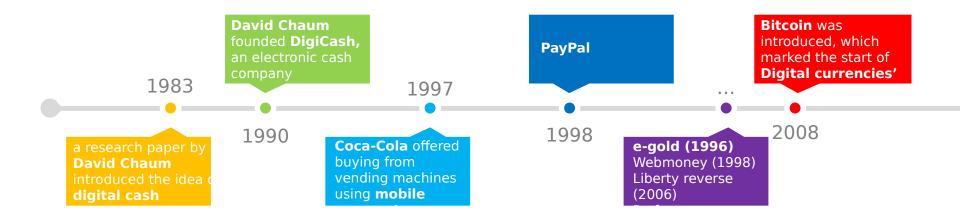
DASHZEVEG Gadbadrakh

Department of Network and Information Security SICT, MUST

Ulaanbaatar, MN

Content


Money vs Currency



Money	Currency	
Money is a store of value and maintains its purchasing power over a long period of time plus:	Currency is what most people think money is!	
medium of exchange	medium of exchange.	
unit of account.	unit of account. (it's got numbers on it!).	
portable	portable	
durable (it never changes from one century to the next).	durable	
divisible	divisible	
interchangeable	interchangeable	
 Silver and gold have intrinsic value! 	 Currency is simply paper. This paper money is a tool for trading your time. Currency has no intrinsic value! 	

Exchange methods

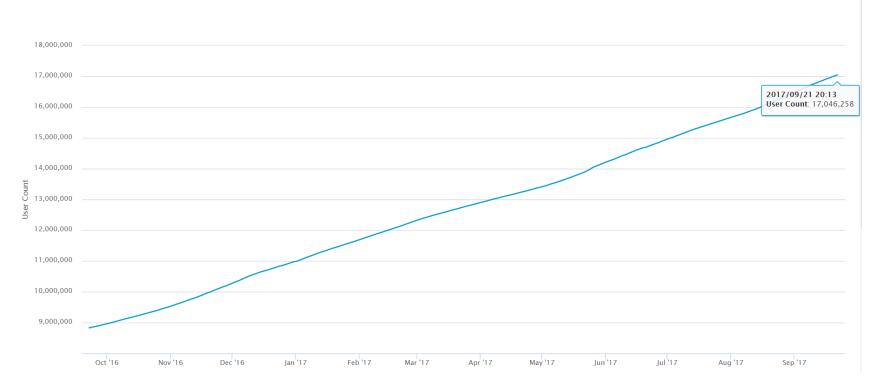
Digital currency

Cryptocurrency

Cryptocurrency

Cryptocurrencies by Market Cap

#	Name	Market Cap (USD)	Unit Price (USD)
1	Bitcoin	\$65,890,246,635.00	\$3975.21000000
2	Ethereum	\$27,028,213,792.00	\$285.37500000
3	Bitcoin Cash	\$7,738,989,490.00	\$466.35800000
4	Ripple	\$7,055,458,626.00	\$0.18400500
5	Litecoin	\$2,871,000,431.00	\$54.16810000
6	Dash	\$2,446,364,642.00	\$323.30200000
7	NEM	\$2,187,702,000.00	\$0.24307800
8	ΙΟΤΑ	\$1,585,243,947.00	\$0.57032800
9	Monero	\$1,455,674,378.00	\$96.37650000
10	Ethereum Classic	\$1,099,002,428.00	\$11.48830000
11	NEO	\$1,068,115,000.00	\$21.36230000
12	OmiseGo	\$1,011,876,507.00	\$10.29250000
13	bcc	\$803,962,113.00	\$119.34900000


Info of Bitcoin

Total Bitcoins in circulation:	16,580,963	
Total Bitcoins to ever be produced:	21,000,000	
Percentage of total Bitcoins mined:	78.96%	
Total Bitcoins left to mine:	4,419,038	
Total Bitcoins left to mine until next blockhalf:	1,794,038	
Bitcoin price (USD):	\$3,589.60	
Market capitalization (USD):	\$59,519,022,990.0 0	
Bitcoins generated per day:	1,800	
Bitcoin inflation rate per annum:	4.04%	1 USD = 100 cents
Bitcoin inflation rate per annum at next block halving event:	1.80%	1 BTC = 100,000,000 s
Bitcoin inflation per day (USD):	\$6,461,280	
Bitcoin inflation until next blockhalf event based on current price (USD):	\$6,439,877,010	
Total blocks:	486,477	
Blocks until mining reward is halved:	143,523	
Total number of block reward halvings:	2	
Approximate block generation time:	10.00 minutes	
Block reward	12.5	
Approximate blocks generated per day:	144	
Difficulty:	1,103,400,932,964	
Hash rate:	8.90 Exahashes/s	

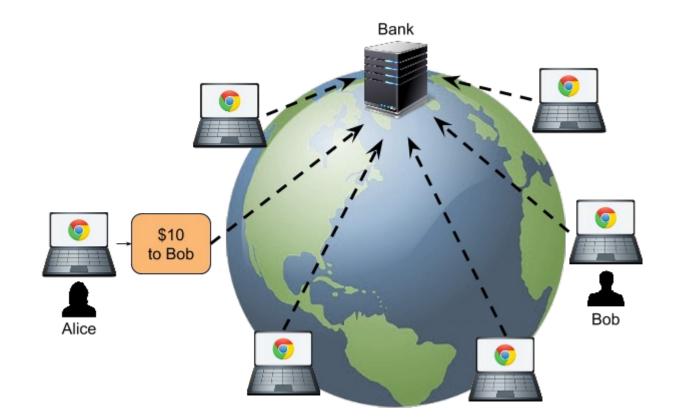
Blockchain Wallet Users

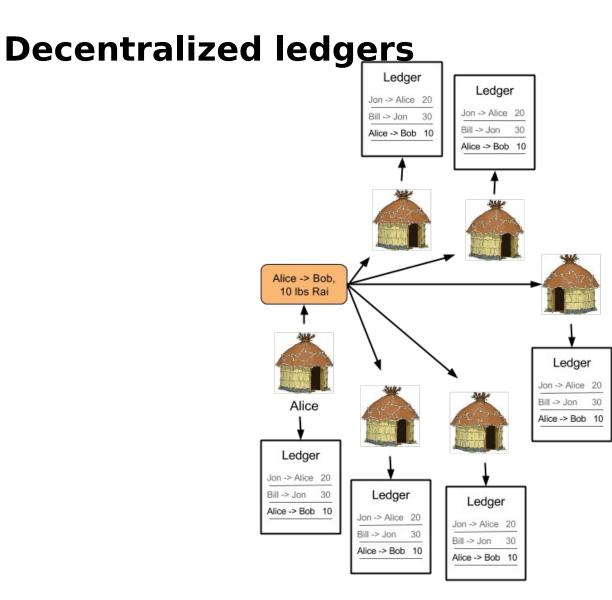
Blockchain Wallet Users

Source: blockchain.info

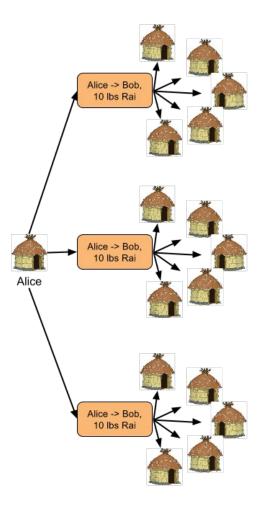
Richest addresses

Richest addresses

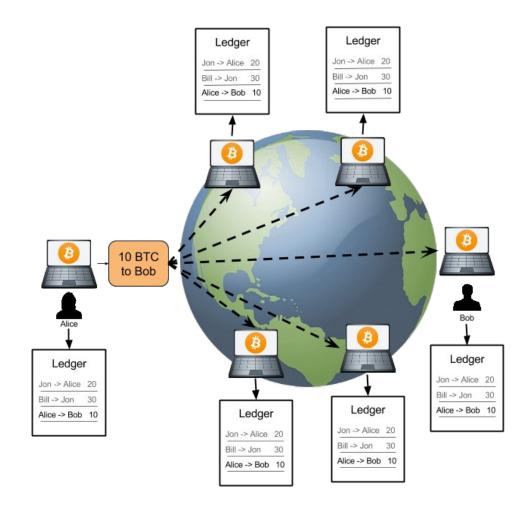

Bank Ledger vs Bitcoin Ledger

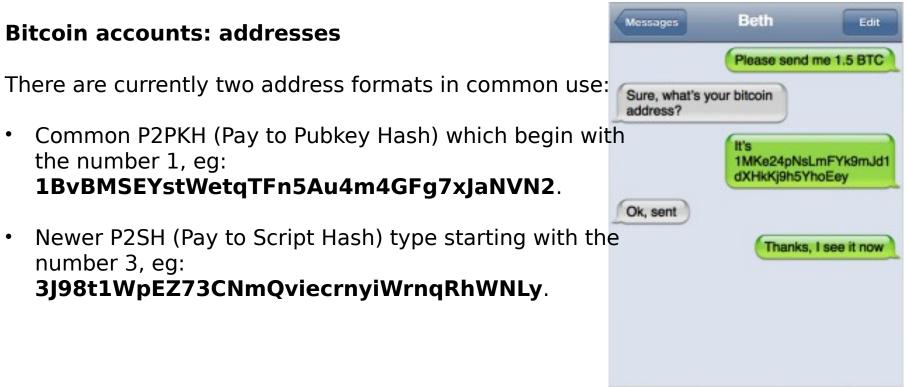

	BANK LEDGER
20 Aug	Acc #12345678 pays \$100 to Acc #32121054
20 Aug	Acc #88812345 pays \$150 to Acc #32121054
21 Aug	Acc #88812345 pays \$100 to Acc #3234567

BITCOIN LEDGER

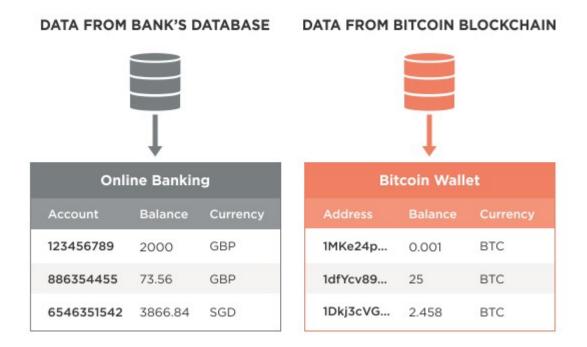

17 Aug	Bitcoin address xxx pays 0.5 BTC to bitcoin address yyy
18 Aug	Bitcoin address xxx pays 2 BTC to bitcoin address zzz
18 Aug	Bitcoin address zzz pays 0.002 BTC to bitcoin address xxx

Centralized ledgers




Decentralized ledgers

Decentralized ledgers



Bitcoin accounts: addresses

0	Send
---	------

Bitcoin wallets

How are bitcoins sent? Payments, or bitcoin transactions

BITCOIN WALLET		
Address	Private Key (usually hidden from screen)	
1KrieA3KyYVrLJbSynkML9rriBLZpk	5J7ZWKWJE1fMSjQSTyeBqD4cxickKKA7xF	
PvDR	dYHZDeXVbmoPBLrey	
1KKGgesMtkWW52SEyd88kBkSijhV	5JwGTvMJumhMtxNBSj5QdYZVSck5W8Pq	
ps7nJJ	AC5mtEUnRA1xHpL9g5x	
14wKRvadKMq6Lthg9HAic5iebKW	5JphsyRvz3Goves7GVzntJ4bVpTWnmExXs	
GSY2w75	jK3fHe6zhRqrgZoDT	

Wallet types

Cold wallets and Hot wallets

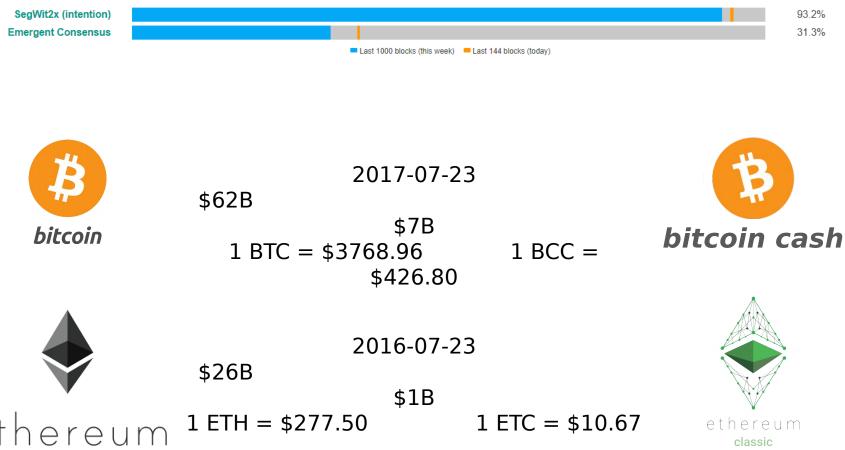
- Desktop wallets
- Mobile wallets
- Online web wallets
- Physical wallets (Paper wallets, ...)
- Bitcoin Clients
- Hardware Wallets

5 Ways to Participate in the Bitcoin Revolution

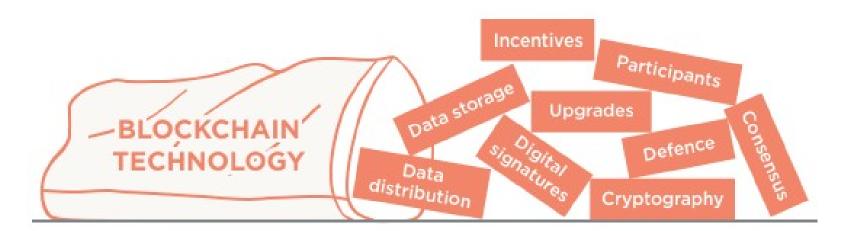
1. Acquire bitcoins.

- a.) Accepting bitcoin payments
- b.) Mining bitcoins
- c.) Purchasing bitcoins
- 2. Engage in services for bitcoin.
 - a.) Digital or hardware wallet services:
 - b.) Bitcoin payment processors:
- 3. Provide solutions for bitcoin acceptance.
- 4. Leverage blockchain technology.
- 5. Invest in bitcoin.

Who controls the Bitcoin network?

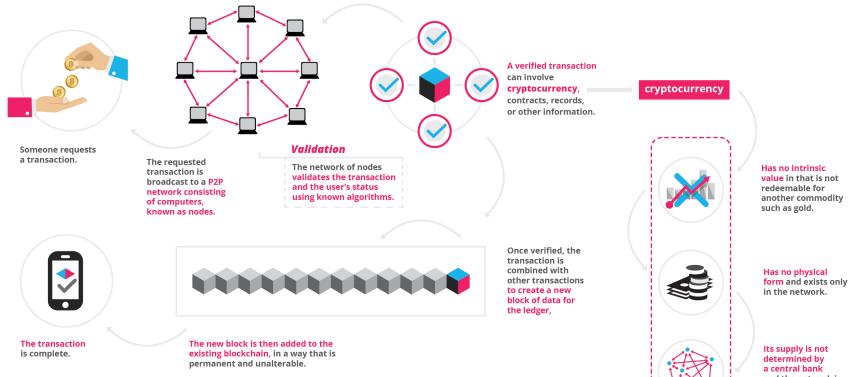

 \rightarrow

There are currently **9141*** nodes running on the Bitcoin network.


6685 Bitcoin Core nodes	809 Bitcoin-ABC nodes	666 Bitcoin Unlimited nodes	437 Bitcoin UASF nodes ∽
184 btc1 nodes →	132 Bitcore nodes	95 Bitcoin Classic nodes ∽	47 Bitcoin Knots nodes
26 bcoin nodes →	25 btcd nodes	19 Bitcoin XT nodes	11 TRB nodes →
5 libbitcoin nodes			

Who controls the Bitcoin network?

Explicit Mining Pool Support by Proposal


What is Blockchain Technology?

Blockchains are built from 3 technologies

1. Private Key Cryptography	2. P2P Network	3. Program (the blockchain's protocol)
Cash vs. Plastic	Tree falls in a forest	Tragedy of the commons
Identity	System of Record	Platform

Bitcoin transaction

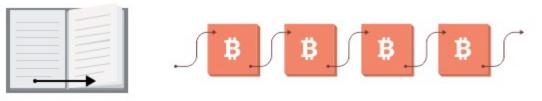
Its supply is not determined by a central bank and the network is completely decentralized.

DATA STORAGE: What is a blockchain?

A blockchain is just a file.

Blocks in a chain = pages in a book

For analogy, a book is a chain of pages. Each page in a book contains:


the text: for example the story

information about itself: at the top of the page there is usually the title of the book and sometimes the chapter number or title; at the bottom is usually the page number which tells you where you are in the book. This 'data about data' is called meta-data.

Similarly in a blockchain block, each block has:

the contents of the block, for example in bitcoin is it the bitcoin transactions, and the miner incentive reward (currently 25 BTC).

a 'header' which contains the data about the block. In bitcoin, the header includes some technical information about the block, a reference to the previous block, and a fingerprint (hash) of the data contained in this block, among other things. This bash is important for ordering

Keeping track of payments: The Bitcoin Blockchain

Name	^	Date Modified	Size	Kind
🔻 🛅 Bitcoin		Today 9:33 pm		Folder
bitcoind.pid		13 Aug 2015 10:15 pm	4 bytes	Document
🔻 🛅 blocks		Today 8:15 am		Folder
blk00000.dat		16 Dec 2014 12:23 pm	134.2 MB	Document
blk00001.dat		16 Dec 2014 12:27 pm	134.2 MB	Document
blk00002.dat		16 Dec 2014 12:32 pm	134.2 MB	Document
blk00003.dat		16 Dec 2014 12:36 pm	134.2 MB	Document
blk00004.dat		16 Dec 2014 12:40 pm	134.2 MB	Document
blk00005.dat		16 Dec 2014 12:52 pm	134.2 MB	Document
blk00006.dat		16 Dec 2014 12:56 pm	134.2 MB	Document
blk00007.dat		16 Dec 2014 1:01 pm	134.2 MB	Document
blk00008.dat		16 Dec 2014 1:05 pm	134.2 MB	Document
blk00009.dat		16 Dec 2014 2:48 pm	134.2 MB	Document
blk00010.dat		16 Dec 2014 2:51 pm	134 MB	Document
blk00011 dat		16 Dec 2014 2:56 pm	134 MB	Document

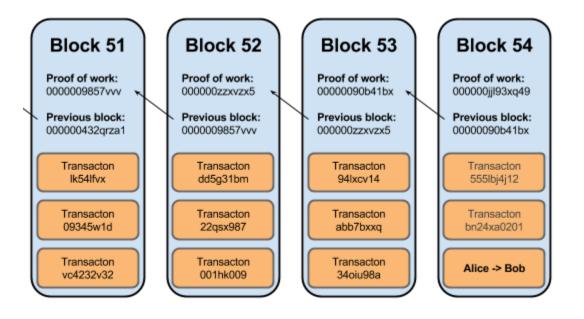
As of **2014**, A screenshot of The Bitcoin Blockchain files on my computer. Here you can see The Bitcoin Blockchain split into files, each 134MB big, and the total is about 50GB at time of writing.

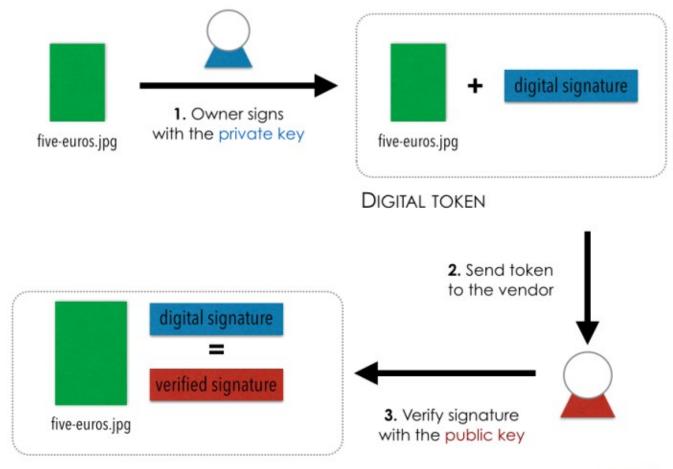
Block ordering in a blockchain

Page by page. With books, predictable page numbers make it easy to know the order of the pages. If you ripped out all the pages and shuffled them, it would be easy to put them back into the correct order where the story makes sense.

Block by block. With blockchains, each block references the previous block, not by 'block number', but by the block's fingerprint, which is cleverer than a page number because the fingerprint itself is determined by the contents of the block.

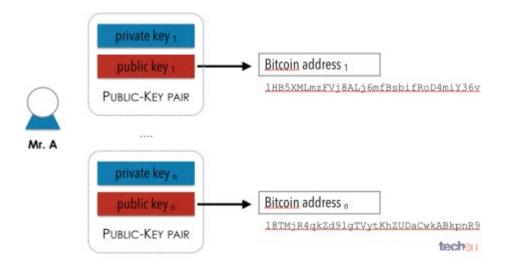
BOOK ORDERING	BLOCK ORDERING
Page 1, 2, 3, 4, 5	Block n58uf0 built on 84n855, Block 90fk5n built on n58uf0, Block 8n6d7j built on 90fk5n.
Implicit that the page builds on the page whose number is one less. eg Page 5 builds on page 4 (5 minus 1).	84n855, n58ufO, 90fk5n, 8n6d7j represent fingerprints or hashes of the blocks.

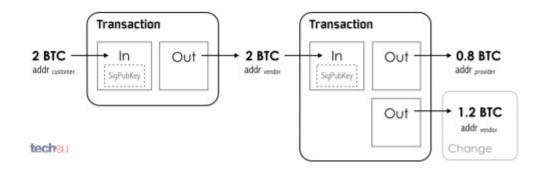

Internal consistency


Structure of Bitcoin Block

Field	Description	Size
Magic no	value always 0xD9B4BEF9	4 bytes
Blocksize	number of bytes following up to end of block	4 bytes
Blockheader	consists of 6 items	80 bytes
Transaction counter	positive integer VI = VarInt	1 - 9 bytes
transactions	the (non empty) list of transactions	<transaction counter="">-many transactions</transaction>

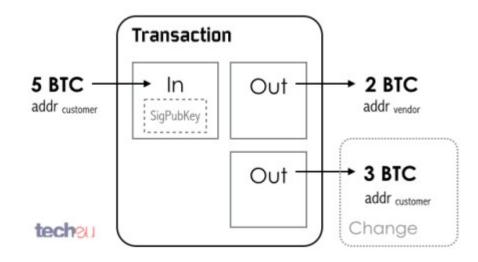
Structure of Bitcoin Blockchain


How digital signature algorithms can be used to verify ownership of a digital token

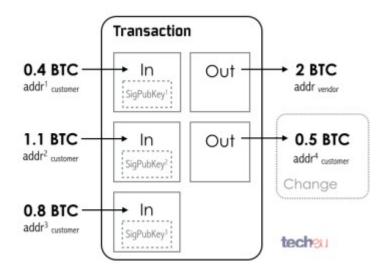

DIGITAL TOKEN VERIFIED

techou

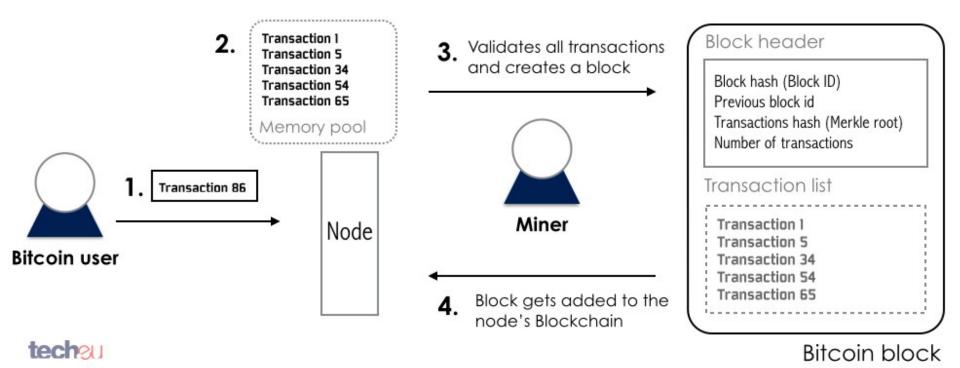
What exactly is Bitcoin?

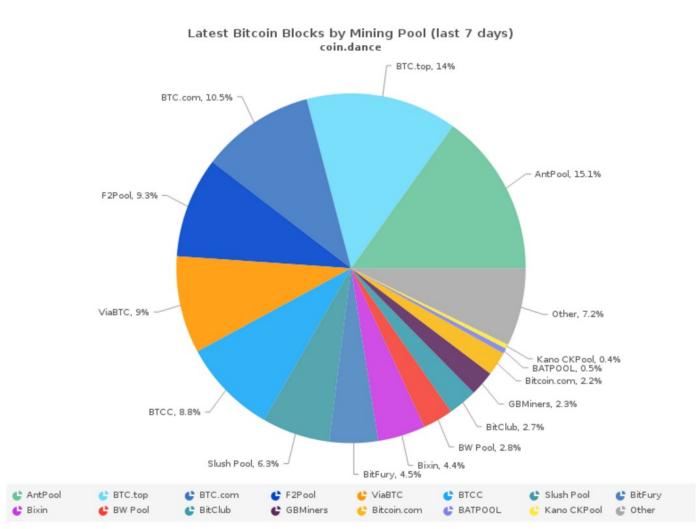


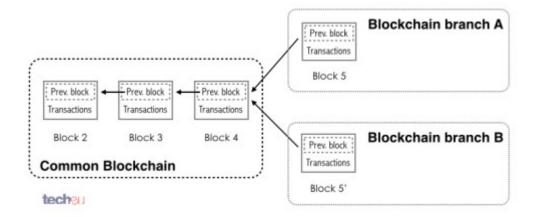
An example of two linked transactions

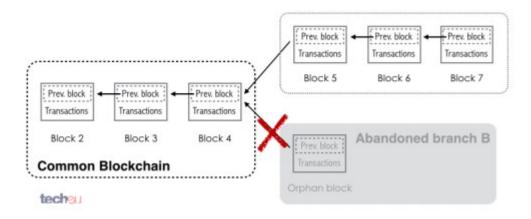


The Bitcoin transactions stored in the Blockchain can be very simple (above), or become very complex with multiple input and output sources (below).

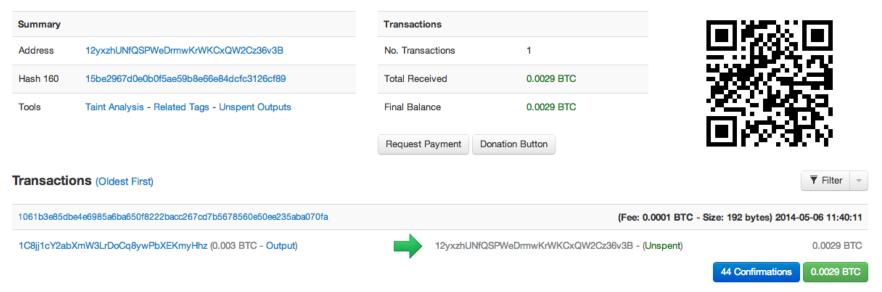

A single input-multiple output Bitcoin transaction

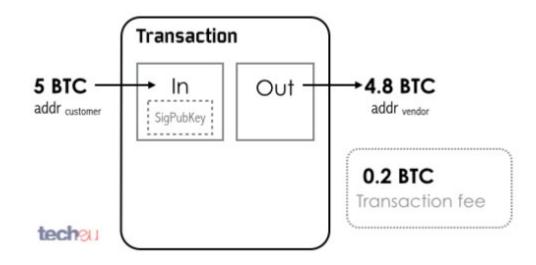

A multiple input-multiple output Bitcoin transaction


Create a block



Latest Bitcoin Blocks by Mining Pool


Bitcoin Blockchain fork


Transaction confirmations

Bitcoin Address Addresses are identifiers which you use to send bitcoins to another person.

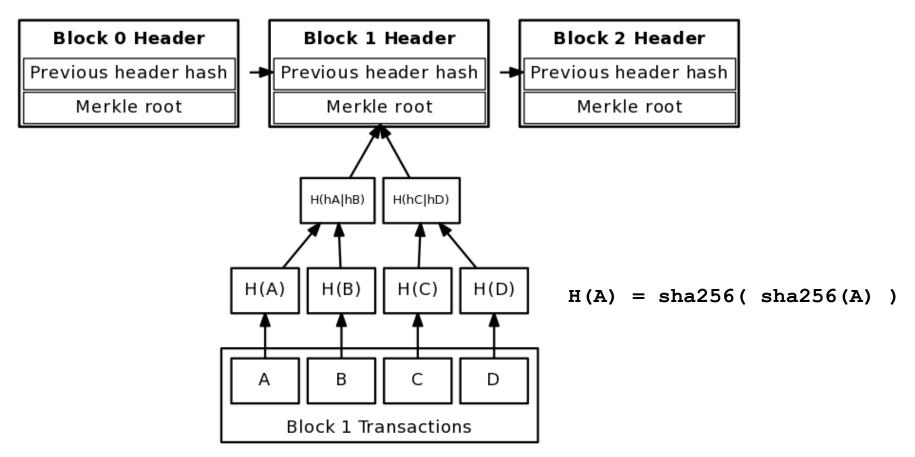
The reason is that, as seen before, the blockchain might have **a fork**. If we **accept a transaction** before waiting for **at least six confirmations**, it might happen that the network **drops that branch**, effectively rendering the transaction **void**, exposing us to **a fraud situation** or **double spending**.

Transaction fees

- In theory, every transaction is processed for free.
- However, Bitcoin allows its users to 'tip' the miners for validating their transaction.

Types of Proof

- Proof of Work
- Proof of Stake
- Proof of Importance


• ...

```
payload = <some data related to things happening on the Bitcoin
network>
```

nonce = 1

hash = SHA2(SHA2(payload + nonce))

Transaction verify: Merkle Tree

Merkle tree connecting block transactions to block header merkle root

What is Bitcoin mining?

payload = <some data related to things happening on the Bitcoin
network>

nonce = 1

```
hash = SHA2( SHA2( payload + nonce ) )
```

hash => Target

```
For example:
Our target is a value beginning with '000'.
"Hello, world!0" => 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
"Hello, world!1" => e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
"Hello, world!2" => ae37343a357a8297591625e7134cbea22f5928be8ca2a32aa475cf05fd4266b7
...
"Hello, world!4248" => 6e110d98b388e77e9c6f042ac6b497cec46660deef75a55ebc7cfdf65cc0b965
"Hello, world!4249" => c004190b822f1669cac8dc37e761cb73652e7832fb814565702245cf26ebb9e6
```

"Hello, world!4250" => 0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

Difficulty and Target

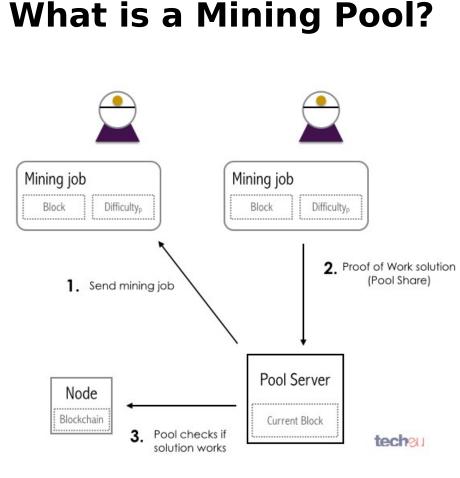
Target represents a number of leading zeroes

Difficulty represents how difficult the current target makes it to find a block

Current difficulty = 1,103,400,932,964 (2017-09-22)

hash = SHA2(SHA2(payload + nonce))

Every 2016th blocks:

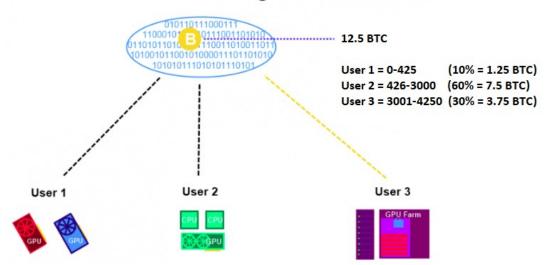

• The target is change (re-target).

Difficulty and Target

What is the Mining Difficulty? It's a mesure of how difficult is to find a hash below the target value (a 256-bit number) during the Proof of Work

Difficulty and Target

AN	T POOL	Home Statistics Coinbase -	- Hashnest H	elp –				
ock History	Solo Ranking		G	HAS	HŅEST	PACMIC V	5 Release! 0	.45 Satoshi/Se
Block Height	Time	Block Hash	Value	Status	Duration	Luck	Hashrate	Total Shares
486468	2017-09-22 19:19:24	00000000000000000362acb1	13.19513735	6/120	1h 25m 38s	77.89%	1184.05 PH/s	1,416,463,979,23
486461	2017-09-22 17:53:46	000000000000000043824bb	12.52966299	13/120	1h 54m 10s	58.79%	1176.70 PH/s	1,876,711,152,56
486447	2017-09-22 15:59:36	00000000000000000001ec5884	12.72549537	27/120	2h 43m 29s	41.25%	1171.41 PH/s	2,675,310,805,41
486431	2017-09-22 13:16:07	0000000000000000071ba706	12.56043987	43/120	19m 59s	333.36%	1185.75 PH/s	331,017,605,00
486428	2017-09-22 12:56:08	00000000000000000000000000000000000000	12.65949899	46/120	41m 17s	145.22%	1317.52 PH/s	759,843,098,98
486423	2017-09-22 12:14:51	00000000000000000000000000000000000000	13.18348594	51/120	28m 5s	208.72%	1347.52 PH/s	528,660,494,28
486418	2017-09-22 11:46:46	00000000000000000000000000000000000000	14.40516547	56/120	2h 10m 57s	42.73%	1411.49 PH/s	2,582,107,603,48
486405	2017-09-22 09:35:49	00000000000000000bb6a692	12.54927704	69/120	22m 8s	203.24%	1755.57 PH/s	542,821,075,20
486401	2017-09-22 09:13:41	0000000000000000000002f34ffb	13.22148771	73/120	10m 7s	394.23%	1980.49 PH/s	279,899,780,75
486400	2017-09-22 09:03:34	00000000000000000000000000000000000000	13.82759412	74/120	1h 6m 42s	65.37%	1811.31 PH/s	1,687,759,760,63
486395	2017-09-22 07:56:52	00000000000000000000000000000000000000	13.02740839	79/120	18m 46s	254.88%	1651.00 PH/s	432,838,834,70
486392	2017-09-22 07:38:06	000000000000000004a8a1ad	12.79347552	82/120	46m 58s	90.49%	1858.61 PH/s	1,219,464,624,51
486387	2017-09-22 06:51:08	000000000000000008e30b98	12.65165809	87/120	55m 5s	82.18%	1744.80 PH/s	1,342,635,437,54
486381	2017-09-22 05:56:03	00000000000000000000000000000000000000	12.86529619	93/120	45m 15s	100.52%	1736.64 PH/s	1,097,790,961,32


- 1. Taking the pool members hashes
- 2. Looking for block rewards
- 3. Recording how much work all the participants are doing
- 4. Assigning block rewards proportionally to participants

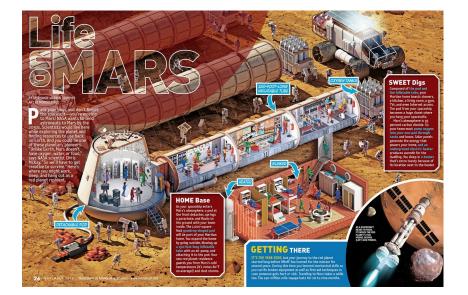
What is a Mining Pool?

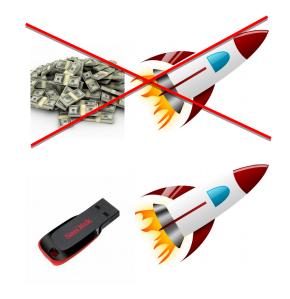
"Hello, world!0" => 1312af178c253f84028d480a6adc1e25e81caa44c749ec81976192e2ec934c64
"Hello, world!1" => e9afc424b79e4f6ab42d99c81156d3a17228d6e1eef4139be78e948a9332a7d8
"Hello, world!2" => ae37343a357a8297591625e7134cbea22f5928be8ca2a32aa475cf05fd4266b7

...
"Hello, world!4248" => 6e110d98b388e77e9c6f042ac6b497cec46660deef75a55ebc7cfdf65cc0b965
"Hello, world!4249" => c004190b822f1669cac8dc37e761cb73652e7832fb814565702245cf26ebb9e6
"Hello, world!4250" => 0000c3af42fc31103f1fdc0151fa747ff87349a4714df7cc52ea464e12dcd4e9

Pool Mining

Cryptocurrency Mining Types

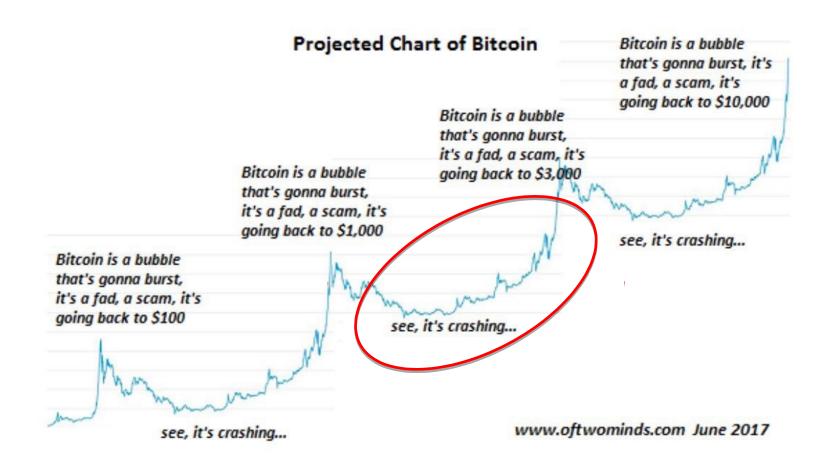

Types of Mining:


- ASIC Mining
- GPU Mining
- Mining services (Cloud mining)
- HDD Mining
- CPU Mining
- FPGA Mining

Daily electric cost of whole cryptocurrency mining ~ **\$2,593,721** (2017-09-21)

The value and The future

Bitcoin ATM map

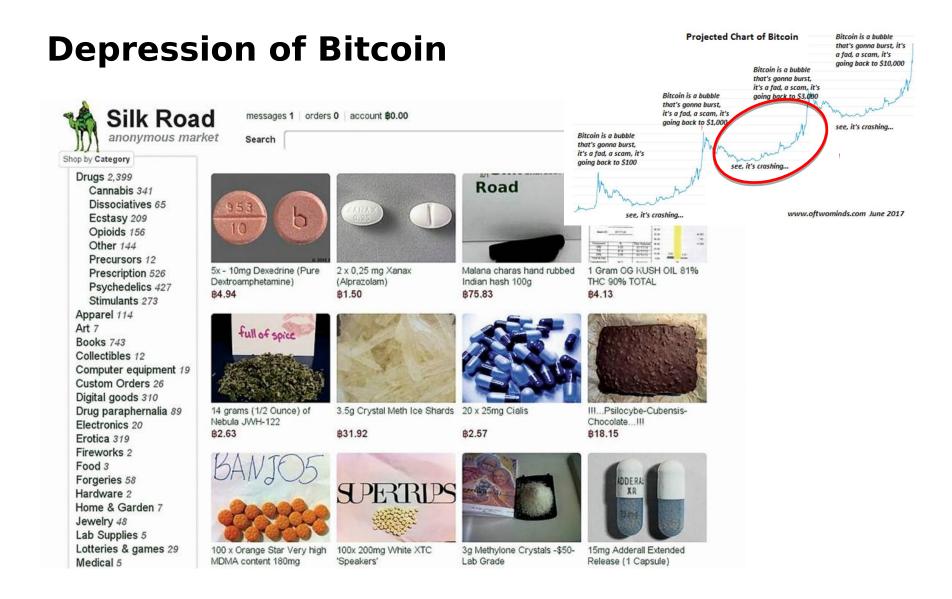

Bitcoin ATM map.

Use our map to find bitcoin or other cryptocurrency ATM locations as well as various alternative crypto-cash exchange services.

Bitcoin ATM map

The Deep Web

The Public Web


Only 4% of Web content (~8 billion pages) is available via search engines like Google

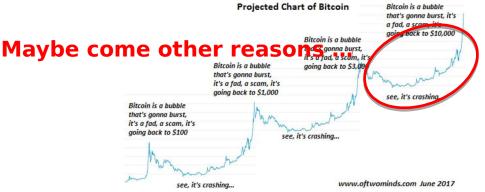
Zettabytes

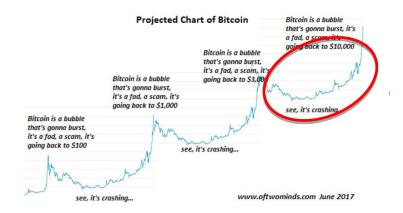
7.9


The Deep Web

Approximately 96% of the digital universe is on Deep Web sites protected by passwords

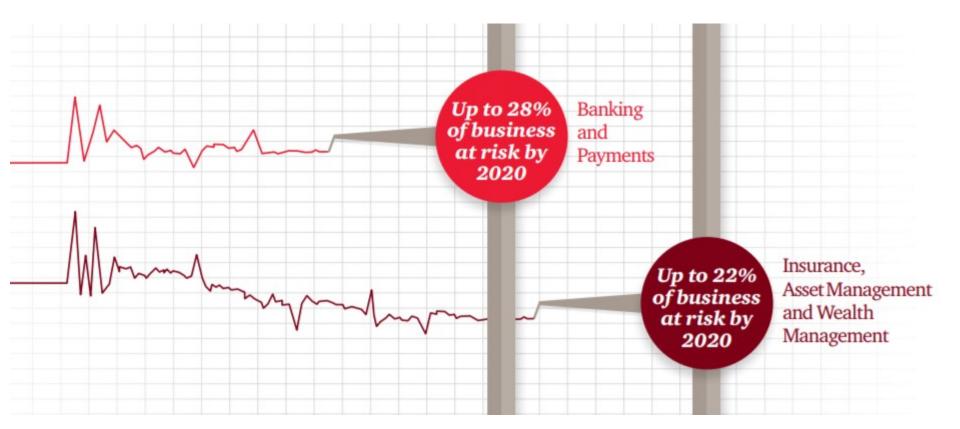
Ra

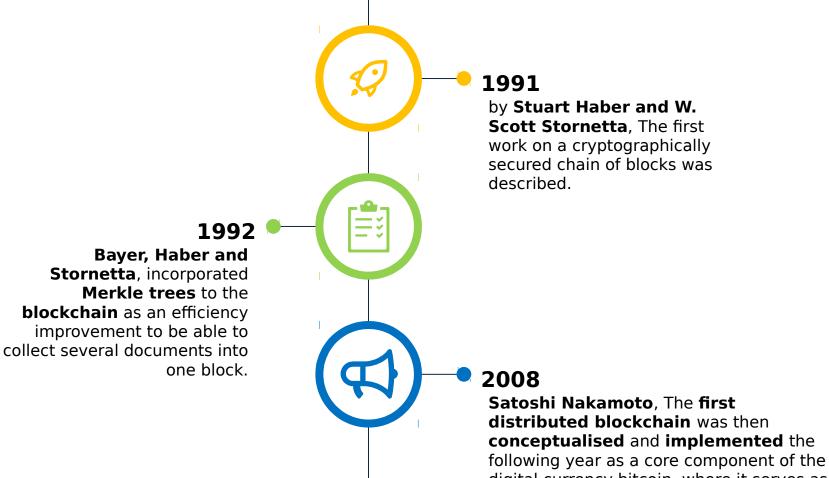

Aug 2017

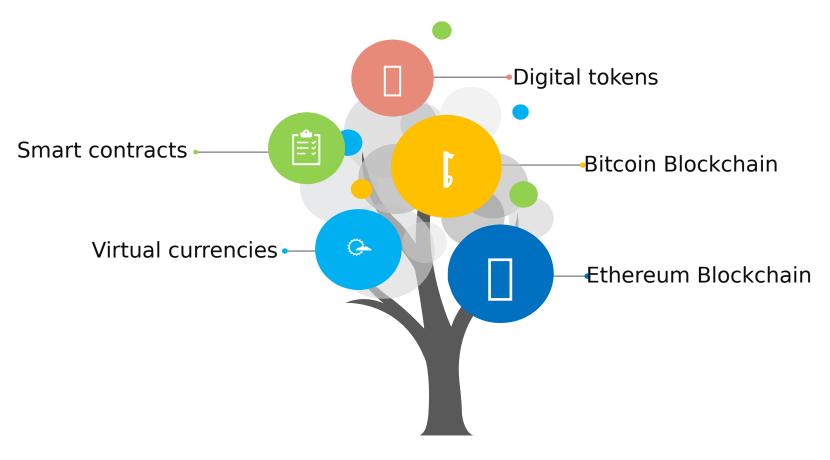

Sep 2017

Jul 2017

Jun 2017



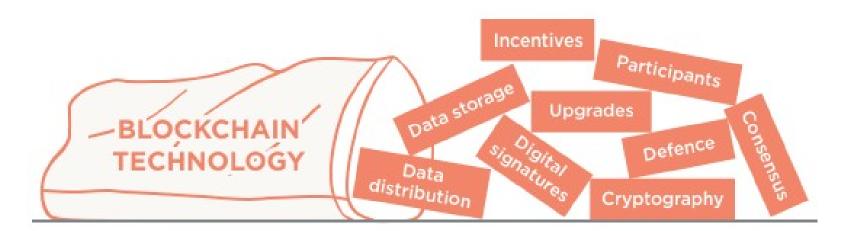



FinTech: Global FinTech Survey 2017

Source: https://www.pwc.com/gx/en/advisory-services/FinTech/pwc-fintech-globalreport.pdf

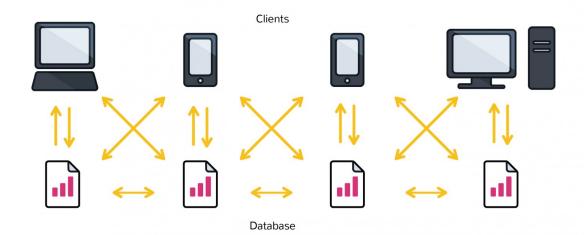
digital currency bitcoin, where it serves as the public ledger for all transactions.

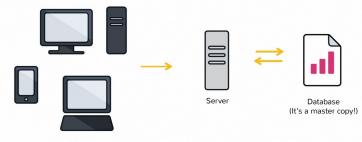
about distributed ledgers / replicated database


The common themes seem to be a **data store** which:

- usually contains financial transactions
- is replicated across a number of systems in almost real-time
- usually exists over a peer-to-peer network
- uses cryptography and digital signatures to prove identity, authenticity and enforce read/write access rights
- can be **written** by certain participants
- can be **read** by certain participants, maybe a wider audience, and
- has mechanisms to make it hard to change historical records, or at least make it easy to detect when someone is trying to do so

"The blockchain is an incorruptible digital ledger of economic transactions that can be programmed to record not just financial transactions but virtually everything of value."


Don & Alex Tapscott, authors Blockchain Revolution (2016)



Blockchains are built from 3 technologies

1. Private Key Cryptography	2. P2P Network	3. Program (the blockchain's protocol)
Cash vs. Plastic	Tree falls in a forest	Tragedy of the commons
Identity	System of Record	Platform

A distributed database

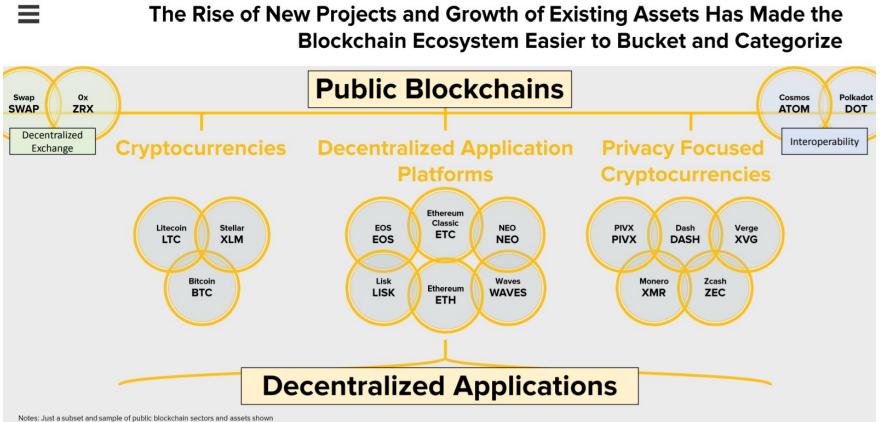
Clients

Public blockchains. Ledgers can be 'public' in two senses:

- 1. Anyone, without permission granted by another authority, can **write** data
- 2. Anyone, without permission granted by another authority, can **read** data

it needs

- ways of arbitrating discrepancies (there is no 'boss' to decide)
- defense mechanisms against attacks


Private blockchains. Conversely

The participants are known and

trusted: for example, an industry group, or a group of companies owned by an umbrella company.

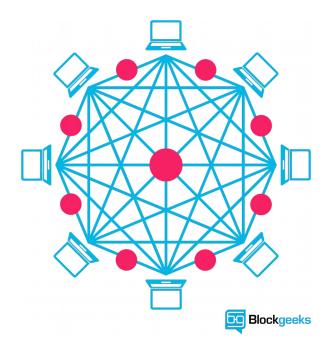
Many of the mechanisms aren't needed

or rather they are replaced with legal contracts – "You'll behave because you've signed this piece of paper.".

Decentralized exchanges may work with just certain tokens (for example just ERC20) and interoperability protocols may extend to permissioned blockchain networks (not shown)

Blockchain Durability and Robustness

- Blockchain technology is like the internet in that it has a built-in robustness.
- By storing blocks of information that are identical across its network, **the blockchain cannot**:
 - **1.** Be controlled by any single entity.
 - 2. Has no single point of failure.
- Bitcoin was invented in 2008. Since that time, the Bitcoin blockchain has operated without significant disruption. (To date, any of problems associated with Bitcoin have been due to hacking or mismanagement. In other words, these problems come from bad intention and human error, not flaws in the underlying concepts.)
- The internet itself has proven to be durable for almost 30 years. It's a track record that bodes well for blockchain technology as it continues to be developed.

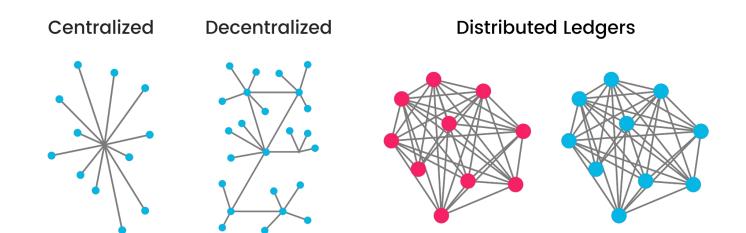

Transparent and Incorruptible

- The blockchain network lives in a state of consensus, one that automatically checks in with **itself every ten minutes.**
- A kind of self-auditing ecosystem of a digital value, the network **reconciles** every transaction that happens in ten-minute intervals.
- Each group of these transactions is referred to as a "block". Two important properties result from this:
 - **Transparency** data is embedded within the network as a whole, by definition it is public.
 - It cannot be corrupted

altering any unit of information on the blockchain would mean using a huge amount of computing power to override the entire network.

• In theory, this could be possible. In practice, it's unlikely to happen. Taking control of the system to capture Bitcoins, for instance, would also have the effect of destroying their value.

A network of nodes



A network of so-called computing "nodes" make up the blockchain.

Node

(computer connected to the blockchain network using a client that performs the task of validating and relaying transactions) gets a copy of the blockchain, which gets downloaded automatically upon joining the blockchain network.

The Blockchain Network

The New Networks

Distributed ledgers can be public or private and vary in their structure and size.

Public blockchains

Require computer processing power to confirm transactions ("mining")

- Users (•) are anonymous

- Each user has a copy of the legder and partipates in confirming transactions independently - Users (•) are not anonymous

- Permision is required for users to have a copy of the legder and participate in confirming transactions

A second-level network

- With blockchain technology, the web gains a new layer of functionality.
- Already, users can transact directly with one another Bitcoin transactions in 2017 averaged over \$ 1,902,258,076 US per day.
- With the added security brought by the blockchain new internet business are on track to unbundle the traditional institutions of finance.
- Goldman Sachs believes that blockchain technology holds great potential especially to optimize clearing and settlements, and could represent global savings of up to \$6bn per year.

The Blockchain a New Web 3.0?

- Smart contracts
- The sharing economy
- Crowdfunding
- Governance
- Supply chain auditing
- File storage
- Prediction markets
- Protection of intellectual property

- Internet of Things (IoT)
- Neighbourhood Microgrids
- Identity management
- AML and KYC
- Data management
- Land title registration
- Stock trading

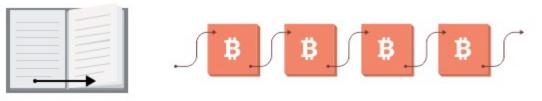
MORE DEPTH, PLEASE

DATA STORAGE: What is a blockchain?

A blockchain is just a file.

Blocks in a chain = pages in a book

For analogy, a book is a chain of pages. Each page in a book contains:


the text: for example the story

information about itself: at the top of the page there is usually the title of the book and sometimes the chapter number or title; at the bottom is usually the page number which tells you where you are in the book. This 'data about data' is called meta-data.

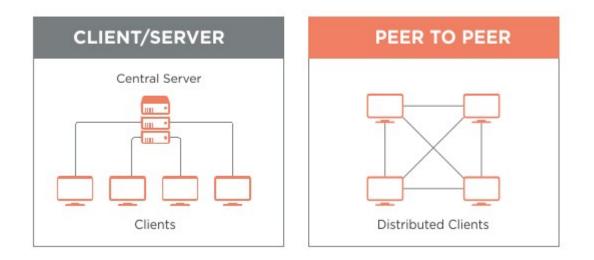
Similarly in a blockchain block, each block has:

the contents of the block, for example in bitcoin is it the bitcoin transactions, and the miner incentive reward (currently 25 BTC).

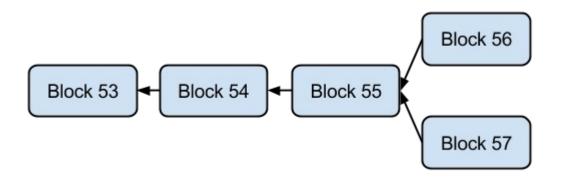
a 'header' which contains the data about the block. In bitcoin, the header includes some technical information about the block, a reference to the previous block, and a fingerprint (hash) of the data contained in this block, among other things. This bash is important for ordering

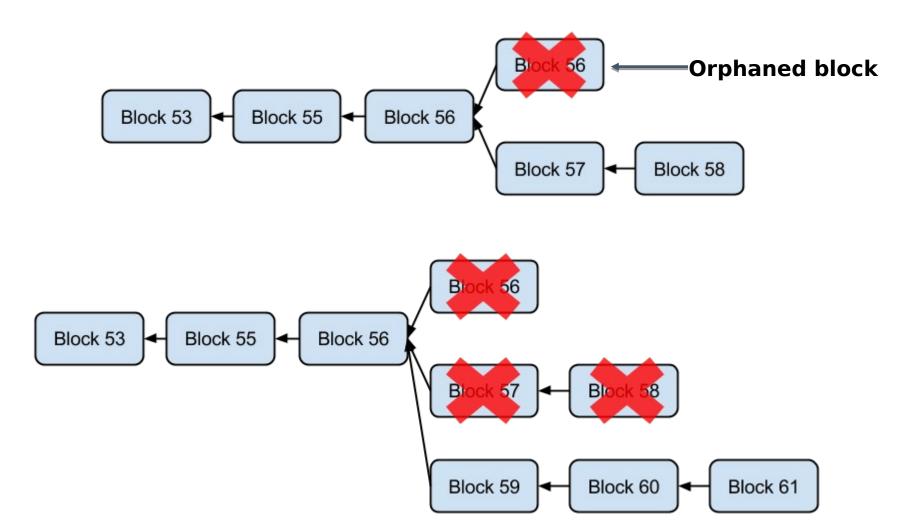
Block ordering in a blockchain

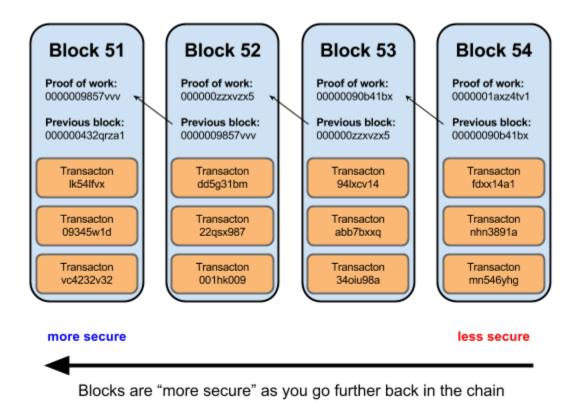
Page by page. With books, predictable page numbers make it easy to know the order of the pages. If you ripped out all the pages and shuffled them, it would be easy to put them back into the correct order where the story makes sense.


Block by block. With blockchains, each block references the previous block, not by 'block number', but by the block's fingerprint, which is cleverer than a page number because the fingerprint itself is determined by the contents of the block.

BOOK ORDERING	BLOCK ORDERING
Page 1, 2, 3, 4, 5	Block n58uf0 built on 84n855, Block 90fk5n built on n58uf0, Block 8n6d7j built on 90fk5n.
Implicit that the page builds on the page whose number is one less. eg Page 5 builds on page 4 (5 minus 1).	84n855, n58ufO, 90fk5n, 8n6d7j represent fingerprints or hashes of the blocks.


Internal consistency


DATA DISTRIBUTION: How is new data communicated?

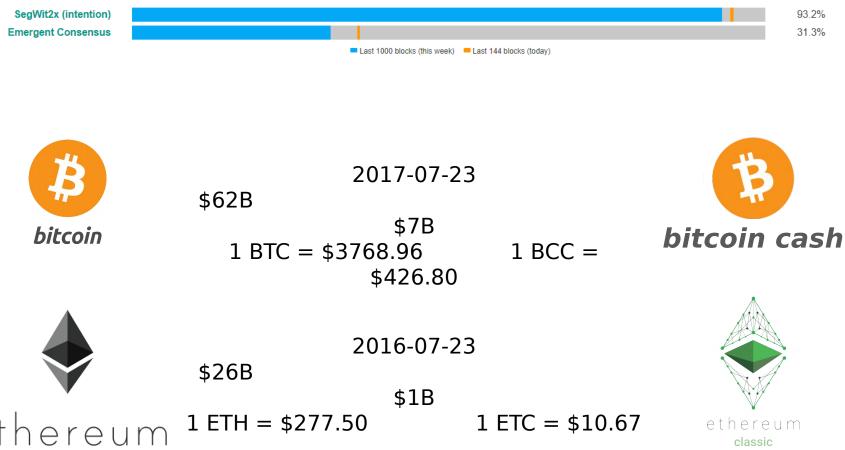

CONSENSUS: How do you resolve conflicts?

Longest chain rule.

Which block is more secure?

UPGRADES: How do you change the rules?

In a private, controlled network where someone has control over upgrades, this is an easy problem to solve: "Everyone must upgrade to the new logic by 31 July".


However **in a public**, uncontrolled network, it's a more challenging problem.

With bitcoin, there are two parts to upgrades.

- Suggest the change (BIPs). First, there is the proposal stage where improvements are proposed, discussed, and written up. A proposal is referred to as a "BIP" a "Bitcoin Improvement Proposal". If it gets written into the Bitcoin core software on Github, it can then form part of an upgrade the next version of "Bitcoin core" which is the most common "reference implementation" of the protocol.
- 2. Adopt the change (miners). The upgrade can be downloaded by nodes and block makers (miners) and run, but only if they want to (you could imagine a change which reduces the mining reward from 25 PTC per block to 0 PTC. We'll see just how many

Who controls the Bitcoin network?

Explicit Mining Pool Support by Proposal

WRITE ACCESS: How do you control who can write data?

In the bitcoin network, theoretically anyone can download or write some software and start validating transactions and creating blocks

Your computer will act as a full node which means:

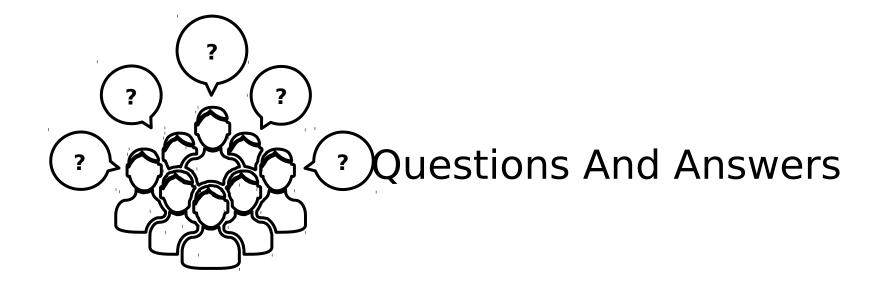
- Connecting to the bitcoin network
- Downloading the blockchain
- Storing the blockchain
- Listening for transactions
- Validating transactions
- Passing on valid transactions
- Listening for blocks
- Validating blocks
- Passing on valid blocks
- Creating blocks
- 'Mining' the blocks

DEFENCE: How do you make it hard for baddies?

A problem with a permissionless, or open networks is that they can be attacked by anyone. So there needs to be a way of making the network-as-a-whole trustworthy, even if specific actors aren't.

What can and can't miscreants do?

A dishonest miner can:


- 1. Refuse to relay valid transactions to other nodes
- 2. Attempt to create blocks that include or exclude specific transactions of his choosing
- 3. Attempt to create a 'longer chain' of blocks that make previously accepted blocks become 'orphans' and not part of the main chain

He can't:

- 4. Create bitcoins out of thin air*
- 5. Steal bitcoins from your account
- 6. Make payments on your behalf or pretend to be you

That's a relief.

Thanks for paying attention 🛓

