
MUNKHBAYAR Bat-Erdene (MB)

“ MNSEC-2017’’

 Cyber Security Conference 2017-09-29.

Entropy Analysis of Packing Algorit
hms for Malware Detection

Contents

1. Introduction

2. Motivation

3. Related works

4. Proposed main mechanism

5. Experimental result

6. Conclusion

2

Introduction

3

• Classify known/unknown single-layer packing, re-packing
and multi-layer packing algorithms of a given packed
executable using similarity and supervised learning with
 symbolic representation

Goals of researchGoals of research

• The number of malware is increasing
• Malicious Software (Malware) authors are producing

packed malware to avoid anti-malware system
MalwareMalware

• A software program that compresses and encrypts other
 executable filesPackersPackers

• A form of packed executable presents a significant
challenge to analyze malwarePacked malwarePacked malware

Motivation
– Over 80% of malwares appear to be created using a packing algorithm to circumv

ent anti-malware systems [Osaghae et al. 2016, Jacob et al. 2012, and Bat-Erdene
et al. 2013]

– There is the evidence that more than 50% of new malwares are simply re-packed
versions of existing ones

– Detecting packing algorithms is necessary for recognizing hidden malwares and pr
eventing them from deluding anti-malware systems

4

HeaderHeader

Code (.text)Code (.text)

Data (.data)Data (.data)

HeaderHeader

Code (.text)Code (.text)

Packed program Packed program

Data (.data)Data (.data)

Unpack (.text)Unpack (.text)

.

Packing Packing

HeaderHeader

Code (.text)Code (.text)

Data (.data)Data (.data)

HeaderHeader

Code (.text)Code (.text)

Packed program Packed program

Data (.data)Data (.data)

Unpack (.text)Unpack (.text)

.

Packing Packing

HeaderHeader

Code (.text)Code (.text)

Re-packed
program

Re-packed
program

Data (.data)Data (.data)

Unpack (.text)Unpack (.text)

.

Packing Packing

 Problem
 Cannot detect unknown/new packed

malware
 Need to unpack packed malware

Related Works

5

Related works 1/3

Signature-based
detection method
Signature-based
detection method

Machine learning
method

Machine learning
method

Pattern recognition
method

Pattern recognition
method

Control-flow graphs
method

Control-flow graphs
method

Related
works

Related
works

6

We conducted a study on previous related works in the following categories:

All method of which can be employed to detect single-layer packing algorithms and
single-layer packed malware

Related works 2/3

7

1. Signature-based detection method:
• Uses pattern matching
• Searches for known patterns of data belonging to malwares in executable programs

or other types of files
• Maintains and updates a blacklist of signatures

2. Machine learning method:

• A branch of artificial intelligence
• Machine learning is programming computers to optimize a performance criterion

using example data or past experience

– This method presented a vector of n-grams to represent malicious and benign
files, and a comprehensive evaluation of classifiers

Related works 3/3

3. Pattern recognition method

• Pattern recognition is a branch of machine learning
• Machine learning focuses on the recognition of patterns and regularities in data

– Pattern recognition systems are in many cases trained from labeled "training" data (super
vised learning)

– But when no labeled data are available other algorithms can be used to discover previousl
y unknown patterns (unsupervised learning)

8

4. Control-flow graphs method

• A control-flow graph (CFG) is a directed graph representation of a program and
usually a sparse graph

• CFGs include all possible control paths in a program

Main Mechanism

9

Proposed main mechanism

10

• Measure entropy
patterns

Entropy anal-
ysis
Entropy anal-
ysis

• Extract patterns
 of symbolic
 representation us-
ing entropy patterns

Symbolic
 representa-
tion

Symbolic
 representa-
tion

• Classify SAX
 patterns

Classification

Classification

Our mechanism
consists of 3 steps

• Measuring entropy pattern determines the entropy
value of packed executable in unpacking process

1. We executed a given single-layer packed, re-
packed, or multi-layer packed executable and let it
conduct unpacking process

2. During an unpacking process, packed
instructions are unpacked by a decompression module

3. We measured entropy to determine changes in
memory space

4. We measured entropy score to find the OEP

1. Measure Entropy Pattern

11

𝐻 (𝑥)=−∑
𝑖=1

𝑛

𝑃 (𝑖) log𝑏𝑃 (𝑖)

where is value of the measured entropy value;
 is the probability of the unit of information in the series of n variables of event x.

1.1. Entropy Analysis

• Entropy can be used to evaluate a compress
ion algorithm
– The packed executable is completely u

npacked only if original entry point (O
EP) is found

• During execution we measure the entropy v
alue to determine the OEP
– The address of the first instruction of t

he decompressed code is called the ori
ginal entry point.

• Entropy analysis is conducted by measuring
a specific memory space

• We use entropy analysis to detect the existe
nce of packing algorithm

12

2. Convert Symbolic Representation

13

- Read entropy patterns

- Convert to symbolic representation

- Extract the symbolic entropy patterns of
packing algorithm using SAX

- Compare with existing symbolic represen-
tation and scan similarity of packing al-
gorithms

2.1. Symbolic Representation

• A symbolic representation allows for a dimensionality reduction and index
es using a lower-bounding distance measure of the true distance

• SAX is one of the most competitive methods in the literature
• Lin et al. defined the symbolic representation of time-series as the Symboli

c Aggregate approXimation (SAX)

14

Figure 3.3: The entropy pattern is discretized by first obtaining a PAA
approximation, and then by using predetermined breakpoints () to map the

PAA coefficients into SAX symbols.

2.2. Symbolic Aggregate approXimation (SAX)

• SAX is the first symbolic representation for time-series data mining [Lin et al.]

15

• Scale and normalize time-series;
• Reduce the dimensionality of the time-series using the Piecewise Aggregate Ap-

proximation (PAA) (Lin et al. and Keogh et al.)
• Discretize PAA representation of the time-series that is achieved by determining

the number and location of breakpoints (Yi et al. and Keogh et al.)

• Scale and normalize time-series;
• Reduce the dimensionality of the time-series using the Piecewise Aggregate Ap-

proximation (PAA) (Lin et al. and Keogh et al.)
• Discretize PAA representation of the time-series that is achieved by determining

the number and location of breakpoints (Yi et al. and Keogh et al.)

SAX is applied as follows:SAX is applied as follows:

• Thousands of data points of numerical, continuous data becomes ‘ ABCEDEFGH’• Thousands of data points of numerical, continuous data becomes ‘ ABCEDEFGH’

SAX reduces numerical data to a short string (characters)SAX reduces numerical data to a short string (characters)

2.3. SAX analysis

• The SAX method approximates time-series x of length n into v
ector = (, . . . ,) of any arbitrary length M (M<n, typicall
y M<<n), where each is calculated through the following for
mula:

•

16

~𝑥 𝑖=
1
𝑟 [∑

𝑗=𝑟 (𝑖−1)+1

𝑟𝑖

(~𝑥 𝑗)]

where r is a ratio defined as .

Illustration of conversion into symbolic
representation: SAX.

3. Classification

17

• Our method is a type of supervised classifica-
tion method

• We detect known and unknown single-layer
packing, re-packing, or multi-layer packing al-
gorithm

• Compare existing symbolic representation pat-
terns and scan similarity of single-layer pack-
ing, re-packing, or multi-layer packing algo-
rithm

• Similarity: (x, y) =

Note that the normalization of sequences is explicitly
included and that F(x, y) = 1 if and only if x = y.
In general, 0 F(x; y) 1.

3.1. Classification method

18

AlgorithmsAlgorithms

Decision Trees, Naive Bayes, SVM, Bayesian Networks , Artificial Neural Networks, The
Sequential Minimal Optimization (SMO) Algorithm, k−Nearest Neighbor (kNN) Algorithm,

Symbolic approach etc

To use To use

Flow graph based Code graph based Control Flow
graph Generation

Markov chain
graph

Entropy
analysis

Classification categoriesClassification categories
 1. Supervised learning 2. Unsupervised learning

• Our proposed method includes two types of classification
– The first one is a similarity measurement classification
– A second one includes commonly used classification methods such as the

Naive Bayes and Support Vector Machines

Single-layer Packing Algorith
m Detection

19

Evaluation 1: Single-layer packing algorithm detection

• We proposed a method for detecting single-layer packing algorithms
• In these experiments, methods of similarity measurement, symbolic representation an

d popular forms of classification were used on each single-layer packed executable

20

In this experiment
 the dataset con-

tains

650 single-layer packed

executables

650 single-layer packed

executables

- 326 of which were single-layer
packed malwares

- 324 are single-layer packed
benign executables

- 326 of which were single-layer
packed malwares

- 324 are single-layer packed
benign executables

Packers

We used popular

19 packers

in the experiments

We used popular

19 packers

in the experiments

Experimental

result

High accuracy

 of 95.35%

High accuracy

 of 95.35%

The SVM classification's

accuracy is 95.5%

which is higher than NB

The SVM classification's

accuracy is 95.5%

which is higher than NB

We classified packing algorithms in four class based on their graphically visualized
patterns
1. Increasing class 2. Decreasing class 3. Combination class 4. Constant class

Evaluation 1: Single-layer packing algorithm detection

21

1. Increasing class
• Packing algorithms of the Increasing class

initialize memory space, where unpacked code
will be written, as zeros; it starts with zero
entropy values.

2. Decreasing class
• On the other side, packing algorithms of the

Decreasing class does not initialize memory space
before unpacking packed executables.

3. Combination class
• The combination class is divided in two classes,

the increasing -to-constant and the decreasing-to-
constant patterns.

4. Constant class
• Constant class encloses patterns of packing

algorithms for benign packed executables.
Entropy patterns of benign packed executables
have constant values.

Results of experiments using SAX and entropy
analysis (Single-layer packing algorithm)

• First, we present the benign ``calc. exe’’files single-layer packed using the 19 packi
ng algorithms.

• Second, we assign four types of () values to the packed ``calc.exe’’ executables coϕ() values to the packed ``calc.exe’’ executables co
nverted using SAX.
– In this example, () = 10, () = 100, () = 1000, and () = 10000 where n=100000, () is ϕ() values to the packed ``calc.exe’’ executables co ϕ() values to the packed ``calc.exe’’ executables co ϕ() values to the packed ``calc.exe’’ executables co ϕ() values to the packed ``calc.exe’’ executables co ϕ() values to the packed ``calc.exe’’ executables co

the number of symbols, and the entropy value is mapped to the character symbols, ``abcd
efghijklmnopqrstuvwxyz’’

•

22

Results of experiments using SAX and entropy
analysis (Single-layer packing algorithm)

23

Detailed accuracy of each single-layer packer
using the fidelity similarity classification

dataset.

Accuracy rates of supervised learning
classifier.

Results of experiments using SAX and entropy
analysis (Single-layer packing algorithm)

24

Experimental results of entropy
patterns of three popular packers

converted into symbolic
representations.

Results of single-layer packed malware detection

• We conducted the experiments using 326 single-layer packed malware executables
classified into four classes

• We can classify 89% of the single-layer packed malware into classes of known pac
king algorithms (classes A, B, and C), and the remaining 11% into the class of unkn
own packing algorithms

25

Classification of
single-layer packed

malware

Results of single-layer packed malware detection

26

Detection of packing algorithms from packed malware

1. The single-layer packed malware
pattern of NSanti.ak looks very similar
with the packer patterns of NsPack
(98.6%) among class A

2. The single-layer packed malware
pattern of Klone.bg looks very similar
to the packer pattern of MPRESS
(99.98%) among class B

3. The single-layer packed malware
pattern of Tdss.c has a similarity with
the packer pattern of Molebox
(99.98%) among class C

Re-packing or Multi-layer Pac
king Algorithm Detection

27

Re-packing and multi-layer packing algorithm
detection

• The one more idea of this thesis is to measure the entropy values while unpacking r
e-packed or multi-layer packed executables

28

Re-packing or multi-layer packing algorithm detection method.

Classier for re-packing and multi-layer packing
algorithms

• We classified re-packing or multi-layer packing algorithms in the five classes based
on their graphically visualized patterns, including:
– New class
– Increasing class
– Decreasing class
– Combination class
– Constant class

• We shows the fidelity performance of experiments on the single-layer packed, re-pa
cked, or multi-layer packed executables using
– Aspack
– Alternate EXE
– nPack
– NsPack
– RLPack
– VMProtect packing algorithms

29

Classier for re-packing and multi-layer packing
algorithms

30

Fidelity similarity for re-packing and
multi-layer packing algorithms

Evaluation 2: Re-packing and multi-layer packing algori
thms detection

31

In this experiment the
dataset contains

2196 re-packed and
multi-layer benign

packed executables

2196 re-packed and
multi-layer benign

packed executables

Packers

We used popular

19 packers

in the experiments

We used popular

19 packers

in the experiments

Experimental

result

High accuracy

 of 95.35%

High accuracy

 of 95.35%

• The dataset used in this experiment contains six benign executables for
packing algorithms

• 2196 re-packed and multi-layer packed benign executables
• 19 popular packers

Evaluation 2: Re-packing and multi-layer packing algori
thms detection

32

Experimental results of packed
executables with the single-layer

packers, re-packers, and multi-layer
packers

• Yoda's Cryptor packing
algorithm can re-pack or
multi- layer pack an
executable, re-packed or
multi-layer packed
executables would not work

Results of experiments using SAX and entropy
analysis

33

Experimental results of the re-packing and multi-layer packing algorithms.

• We packed each executable one time, two times, and combination times
using 19 packing algorithms

• We extract entropy pattern of packed notepad.exe by 19 packing algorithms

• We scale entropy pattern of each packed notepad executable

• We calculate the number of symbols () for converting using SAXϕ() values to the packed ``calc.exe’’ executables co

Results of experiments using SAX and entropy
analysis

• We used features of single-layer packed, re-packed, or multi-layer packed executab
les to create the operation of each re-packed or multi-layer packed executables, suc
h as
– the number of sections
– the size of the section
– name of the section

• Next, we found that the nine re-packed or multi-layer packed executable's entropy
patterns of 8 packing algorithms

– New class includes MEW, Yoda's Cryptor;

– Increasing class includes Alternate EXE, NsPack, RLPack;

– Decreasing class consists of nPack;

– Combination class consists of VMProtect, Themida and Aspack;

– Consant class includes TELock
34

Results of experiments using SAX and entropy
analysis

35

Entropy patterns of single-layer
packed and re-packed executable
of Notepad.exe when a packer is

(a) Alternate EXE;
(b) NsPack;
(c) RLPack;
(d) nPack;
(e) VMProtect

y-axis is entropy values
x-axis is ``JMP’’ instruction
numbers

Results of experiments using SAX and entropy
analysis

36

Entropy patterns of single-layer
packed and multi-layer packed
executable of Notepad.exe using two
packers
(a) NsP or Asp;
(b) NsP and Asp;
(c) NsP or VMP;
(d) NsP and VMP;
(e) RLP or VMP;
(f) RLP and VMP;
(g) VMP or NsP;
(h) VMP and NsP;
(i) VMP or RLP;
(j) VMP and RLP

y-axis is entropy values
x-axis is ``JMP’’ instruction numbers

Results of experiments using SAX and entropy
analysis

37

• The average accuracy using re-packe
rs and multi-layer packer are 98.5%
and 97.5%, respectively

• The accuracy of both VMProtect and
MEW re-packing and multi-layer pac
king algorithms is 100%

• The minimum accuracy is 95.8%, wh
ich relates to the RLPack multi-layer
packing algorithm

Conclusion
• This is the first work to classify single-layer packed, re-packed and multi-layer pac

ked executables using entropy pattern of packing algorithms

• We presented a novel technique for the detection of single-layer packing,
re-packing or multi-layer packing algorithms using
– SAX representations of the entropy values
– The similarities in the sequence of SAX symbols in each packer

• We produced a highly accurate single-layer packer, re-packer and multi-layer packe
r classification system on real life data

Future work: We will extract symbolic patterns from new packed malware, examine r
e-packed or multi-layer packed malware packing algorithms
• To use additional supervised classification methods for re-packer and multi-layer pa

cker classification and detection

38

39

Thank you for listening!

Contact: munkh0724@gmail.com

 munkhbayar@korea.ac.kr

	Slide 1
	Contents
	Introduction
	Motivation
	Related Works
	Related works 1/3
	Related works 2/3
	Related works 3/3
	Main Mechanism
	Proposed main mechanism
	1. Measure Entropy Pattern
	1.1. Entropy Analysis
	2. Convert Symbolic Representation
	2.1. Symbolic Representation
	2.2. Symbolic Aggregate approXimation (SAX)
	2.3. SAX analysis
	3. Classification
	3.1. Classification method
	Single-layer Packing Algorithm Detection
	Evaluation 1: Single-layer packing algorithm detection
	Evaluation 1: Single-layer packing algorithm detection
	Slide 22
	Slide 23
	Slide 24
	Results of single-layer packed malware detection
	Results of single-layer packed malware detection
	Re-packing or Multi-layer Packing Algorithm Detection
	Re-packing and multi-layer packing algorithm detection
	Classier for re-packing and multi-layer packing algorithms
	Classier for re-packing and multi-layer packing algorithms
	Slide 31
	Slide 32
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Conclusion
	Slide 39

