Entropy Analysis of Packing Algorit
hms for Malware Detection

MUNKHBAYAR Bat-Erdene (MB)

“ MNSEC-2017”
Cyber Security Conference 2017-09-29.

Contents

1. Introduction
2. Motivation

3. Related works

4. Proposed main mechanism

5. Experimental result

6. Conclusion

@]
N
@+

=
>

Introduction

Goals of research

Malware * Malicious Software (

Packers

Packed malware

Motivation

— Over 80% of malwares appear to be created using a packing algorithm to circumv
ent anti-malware systems [Osaghae et al. 2016, Jacob et al. 2012, and Bat-Erdene

et al. 2013] Header
Code (.text) ’:‘ Problem
Header Unpack (.text)
Code (text) » Cannot detect unknown/new packed
Packing Packed program
malware
Data (.data)

» Need to unpack packed malware

Data (.data)

— There is the evidence that more ", 5.7 jof new n~~" -~ re simply re-packed
versions of existing ones Code (text) Code (text)
Header Unpack (.text) Unpack (.text)
SodeGiez) Packing Packed program Packing Re-packed

program

Data (.data)

Data (.data) Data (.data)

Related Works

Related works 1/3

We conducted a study on previous related works in the following categories:

Signature-based Machine learning
detection method method

Pattern recognition Control-tflow graphs
method method

All method of which can be employed to detect single-layer packing algorithms and
single-layer packed malware

Related works 2/3

1. Signature-based detection method:

Uses pattern matching

Searches for known patterns of data belonging to malwares in executable programs
or other types of files

Maintains and updates a blacklist of signatures

2. Machine learning method:

A branch of artificial intelligence

Machine learning is programming computers to optimize a performance criterion
using example data or past experience

— This method presented a vector of n-grams to represent malicious and benign
files, and a comprehensive evaluation of classifiers

Related works 3/3

3. Pattern recognition method

Pattern recognition is a branch of machine learning

Machine learning focuses on the recognition of patterns and regularities in data

— Pattern recognition systems are in many cases trained from labeled "training" data (super
vised learning)

— But when no labeled data are available other algorithms can be used to discover previousl
y unknown patterns (unsupervised learning)

4. Control-flow graphs method

A control-flow graph (CFG) is a directed graph representation of a program and
usually a sparse graph

CFGs include all possible control paths in a program

Main Mechanism

Testing

Training
PE ey

g)

"alues

vy

LY

1.Measure Entropy

7

Pattern

training

i

Similarity

I

A 4

[2. The Conversion of Entrop

comparison

Threshold
calculate

NO
threshold
YES

Store pattern

of packer

Suspect pattern
of packer

]

Comparison

of classification

Update pattern of
packer database

(Training files)

methods

}

YES

Detect pattern

of packer

3. Classify Packers

* Extract patterns

Our mechanism
consists of 3 steps

* Measure entropy of symbolic * Classify SAX

patterns representation us- patterns
ing entropy patterns
1 . |
Entropy anal- Symbolic TR] Classification ﬁ WM
—— representa- RAADR
ww | | tion f LR
L5 5T T

* Measuring entropy pattern determines the entropy
value of packed executable in unpacking process

1. We executed a given single-layer packed, re-
packed, or multi-layer packed executable and let it
conduct unpacking process

2. During an unpacking process, packed
instructions are unpacked by a decompression module

3. We measured entropy to determine changes in
memory space

4. We measured entropy score to find the OEP

H = P()lagg i)

I=Z¥1

where Bh(walite ol theoinéus iredseandpyirapyeyalue;
R ihdspilabmpilpabdithel thetiST Asofdnbrmatiensiidicsrricsaeib Egittlosahevent x.

1. Measure Entropy

Yes

PE file Binary

Check the
instruction
JMP,JCC?

Yes

Already
checkthe
address?

Savethe address

¥

Analyze the entropy

of the memory

/

The entropy

is stable ?

Entropy can be used to evaluate a compress
ion algorithm

— The packed executable is completely u
npacked only if original entry point (O
EP) is found

During execution we measure the entropy v
alue to determine the OEP

— The address of the first instruction of t
he decompressed code is called the ori
ginal entry point.

Entropy analysis is conducted by measuring
a specific memory space

We use entropy analysis to detect the existe
nce of packing algorithm

Algorithm 1 Finding the OEP during unpacking

Input: The input is a single-layer packed, re-packed or multi-laver packed

executable. The output is an entropy sequence. The packed executable, an
instruction pointer, and entropy of unpacked code are represented by P, IP
and E, respectively. We assume that an executable is categorized as either
packed or native.

Output: Locate OEP of P.

el e

B3

22:
23:
24:

25:

// Initialization runs the executable
Find an entry point and the all section of P.
Set a break point to the entry point.
Set R to the range of the all section.
// Start analysis
while the PROCESS is not terminated do
IP + a current instruction pointer
// Measure entropy in only this condition
it IP is for a JMP instruction then
Measure entropy of R.
else
Continue this loop.
cend if
// Check if unpacking is complete
it Epnin <= Measured entropy < Epqr then
// Check if it jumps onto the unpacked code
if Jump into R from outside of R is true then

OEP + The next instruction address
Break this loop.
else
Continue this loop.
end if
Continue this loop.
end if

end while

representation

— 1

Pattern
extraction

sanjep Adoijug
JO uolsiaauon ayyl 'z

Read entropy patterns

Convert to symbolic representation

Extract the symbolic entropy patterns of
packing algorithm using SAX

Compare with existing symbolic represen-
tation and scan similarity of packing al-
gorithms

A symbolic representation allows for a dimensionality reduction and index
es using a lower-bounding distance measure of the true distance

SAX 1s one of the most competitive methods in the literature

Lin et al. defined the symbolic representation of time-series as the Symboli
c Aggregate approXimation (SAX)

=

-0.43 1

A/B;C iB;B:A B C;

Figure 3.3: The entropy pattern is discretized by first obtammimg a PAA
upprotimsieon, anddteentynsitgonsedéteninddobraliRpuitis(f) o mup the
PAA costhicients inte SAX symbels.

2.2. ymbolic ggregate appro imation (SAX)

SAX is the first symbolic representation for time-series data mining [Lin et al.]

SAX is applied as follows:
“ p

SAX reduces numerical data to a short string (characters)

(@ e (b) - @

2.3. SAX analysis

> TiHe SAX metihod approxmates tmme-series x of length # into v
ectetor ¥= (X1, Xof any dtbt@ir i istitMry lenglh My, fpicall
}M%ik Wwé%%%ﬁ@s aiettateah ol et oy gbr

the1 following formula:

i £

whanerris & natio defimed 2 © = %.

Variable A Series Data
X A time series X = 11,29, ... Tn
X A PAA of a time series X = 77, T3, ..., TH7.
X SAX of time series X = 77,75, ..., Taf
M The number of PAA segments representing time series X, where M < n
a Alphabet size. a i= integer, where a = 2

[llustration of conversion into symbolic
representation: SAX.

3. Classification

Our method is a type of supervised classifica-
tion method

- >
w
Known/unknown g_ .
re-packers:and 5 2 * We detect known and unknown single-layer
multi-layer packers = % . . . ;
l = é packing, re-packing, or multi-layer packing al-
< = gorithm
Classification 23
Method T L
3 2
D = * Compare existing symbolic representation pat-
a? T :
NO YES terns and scan similarity of single-layer pack-
ing, re-packing, or multi-layer packing algo-
Create a new Detect re-packer I'lthm
class and multi-layer
w
. . . § — x.* .
/-R ° Slmllarlty: F(X, y) Q{. _ﬂlﬂ VL yl
i O n o, Yy
Database of unknown Database of known =171 &i=171
multi-layer packer, multi-layer packer,
re-packer patterns _re-packer patterns_J

Note that the normalizatiom of sequences is explicitlly
included and that F(x, y) = 1 if and only if x =y
T4 general, 0 F&eywI= L

3.1. Classification method

Our proposed method includes two types of classification
— The first one is a similarity measurement classification

— A second one includes commonly used classification methods such as the
Naive Bayes and Support Vector Machines

Algorithms

Single-layer Packing Algorith
m Detection

Evaluation 1: Single-layer packing algorithm detection

We proposed a method for detecting single-layer packing algorithms

In these experiments, methods of similarity measurement, symbolic representation an
d popular forms of classification were used on each single-layer packed executable

In this experiment

the dataset con- Packers
tains result

h oS st
executables :
We used popular 0f 95.35%

19 packers

Experimental

- 326 of which were single-layer

packed malwares in the experiments The SVM classification's

accuracy is 95.5%
which is higher than NB

- 324 are single-layer packed
benign executables

We classified packing algorithms in four class based on their graphically visualized
patterns
1. Increasing class 2. Decreasing class 3. Combination class 4. Constant class

Increasing class
* Packing algorithms of the Increasing class
initialize memory space, where unpacked code
will be written, as zeros; it starts with zero
entropy values

Decreasing class
* On the other side, packing algorithms of the
Decreasing class does not initialize memory space
before unpacking packed executables.

Combination class
* The combination class is divided in two classes,
the increasing -to-constant and the decreasing-to-
constant patterns.

Constant class
* Constant class encloses patterns of packing
algorithms for benign packed executables.
Entropy patterns of benign packed executables
have constant values.

3.

4.

1. Increasing class

By 18) Alternate EXE packer gty (b) FSG packer Entrogy (c) RLPack packer
4 :#y‘ . e ootk i ab -ﬂfvil'vw.yff“:;:hi S
' fa i
i L5
sH 1} al
| f [
24 :-IJ 2H
\ [|
1 il 14
T 000) J o v A 000 T304 =
Eatropy (e) UPXN packer gy (f) UPX-iT packer
= .‘ 1
g geys e i
Fle s 4 4 FF
o f
14 .
| oLl
i |
F |
1 L 1
|
O T AN 0000 B30 P 52,000 0500 000 BIP T R T T Y R
2. Decreasing class
o (g) MPRESS packer Eropy (h) Morphine packer :-H(..,,,_. (i) nPack packer
- T .
wf"‘":"“?'_“’&ns.:%ﬁgwn;,‘ . ‘-i\\: !r‘kr:"‘-.‘:-
i . B T poin TE S
g, s A o}
El 3 13
2t {2 2t
1is ﬁ 1 1
R
& || wmey 5| ;
T T 000 T 0000 #0000 000 L0000 Tan o0 ar i
3. Combination class
Entropy {j) Themida packer Bawropy (k) VMProtect packer
6 3
;] TorT Iy Pp=r=s
a
4
3
1
1
k T 0000 0 1w 50,000 TH0,000 250,000 P
Eyiropy (1) Aspack packer Batropy (m) MoaleBox packer
R e —— .
St 3
e ——
4t 4
3 3
. ! el
1} 1

100,600

300,000

WOH00 400,000 IMP

Results of experiments using SAX and entropy

analysis (Single-layer packing algorithm)

* [TFinst, we present the benign ™ edle. exe™ flilles simgled layerpakicedun sipg ithel 99 packi
packgaridhgosithms.

* Second, we assign four types of (5 vahiessoothieeprakias ™ ealle exe™ axasmtatssco
evastedab gy SR X

= In this example, §(B5= 2094(5) 000000000081 96l $(P0O0 ST eviedIAO000900is
hepuimbier ndsiarbol syanddhe endreiyyevistup ysvalappedispihedclathetehspaatbo ksymabisd
etebuiielipmigiignstoyyysyzvxyz'’

Calc.exe packed using Aspack | . Calc.exe packed using UPX . Calc.exe packed using MPRESS
py ntro| ntropy

Enéro v ‘g
. \ A = M
a 4
sl
3 3
St
2 2
1 1
o o [alcexe ==1| calcexe ——]
100,000 200,000 300,000 JMP 50,000 100,000 150,000 JMP 100,000 200,000 JMP
Symbolic representation Symbolic representation Symbolic representation
of packed calc.exe by Aspack of packed calc.exe by UPXN of packed calc.exe by MPRESS
Symbols Symbols Symbols
10000 10000 === - = e B O S ‘
100 1000| : 1000
100} \ 100 | ..
T| fx)*‘x—x_**)‘_"ﬂﬁx—x—x—ﬂ—ﬁﬁ(SN 100 X‘XWW e
| /
")=10
\\ ' e o
1 @(B)=10000

1
3,000 6,000 9,000 ¢(B) 3,000 6,000 9,000 @(B) 3,000 6,000 9,000 ¢(B)

Results of experiments using SAX and entropy

analysis (Single-layer packing algorithm)

Num. | PACKERS T.% | Fo A P% R% | Classification | .% | F% | A% | P% | R% |
1. Allt{rrrlate_EXE 100.0 0.0 [100.0 100.0 | 1000 Naive Baves 92.0 150 9041 0131 93.0
2 kSG 100.0 31 08,2 96.0] 100.0 Support vector machine | 95.7 23| 935 90.0 | 95.7
3. RLPack a0.5 5.1 90.2 56.4 0.5 AVERAGE 06.8 19 1929 | 90.0 | 96.8
4. NsPack 05.2 4.8 06.1 05.2 05.2
5. | UPXN 05) oS4 922) 95| 905 Accuracy rates of supervised learning
6. UPXAT 04.5 1.8 04.6 04.8 04.8 .

7. MPRESS 100.0 0.0 [L00.0 100,0 | 1000 ClﬂSSlﬁer.
B. Morphine 100.0 0.0 [100.0 100.0 | 1000
9. nPack 100.0 10.0 04.1 OL.7 | 100.0
10. | Themida 06.3 5.9 96.0 092.3 96.3
11. | VMProtect 06.2 29 05.0 02.3 06.2
12, Aspack 05.2 4.8 06.1 05.2 05.2
13. MoleBox 100.0 0.0 [100.0 100.0 | 1000
14. Petite 02.3 11.5 90.9 01.7 92.3
15. ASProtect 01.9 04 01.9 02.6 02.7
16. Mew 100.0 0.0 1 100.0 100.0 100.0
17. | Yoda's Crypter 02.3 4.7 03.5 58.9 a92.3
18. PELock B58.5 a.7 =283 =58.5 58.5
19, tELock 06.2 2.8 03.3 =0.3 06.2

| | AVERAGE | 95.77 | 4.78 [95.35 | 94.13 | 95.83

Detailed accuracy of each single-layer packer
using the fidelity similarity classification
dataset.

Results of experiments using SAX and entropy

analysis (Single-layer packing algorithm)

Symbolic representation
B Packed using Aspack Symibais of Aspack packer

M T S T N N S S N S e e T

Experimental results of entropy s il il e - - \
patterns of three popular packers ? r

2 el ere —1—| caleexe g)= 1 0 —
Treccellexe i [=1 HMY ‘

converted into symbolic Jmetiuas | | LSl atoisn

1 1 T | IR REE ERe fl msixes.exe =100k
noie pad.exe notepadone @l Bi=100H}

1 | i | elnetene —o belnetexe =100 —=
representatlons' 5 ITLEALLE 20H1, (M} Tl OO dt::l.ilnll P 3,000 6,00k GO i
Symbolic representation
Eniropy Packed using MPRESS et of MPRESS packer

LU p s o s ==
b = p=r o m-g
5 o Wﬂ{vﬁ!'i‘.;ﬁ.ﬁF & ; R ==
19 . Wi A “Him
£ '!‘
100 X 3
3 T
2 oo e | cale,exe g [§)=10000 —— .
ot Treecellexe =100 —=
msheirts. oie | ki, ese i 3= 100
1 | msieneceie f T L maiexed, exe i 3=
modepad.exe notepalane @l i=10000
il L teinelexe - | teloetese @E=1MHH —=— | \
100D TR Nk AP 3,000} iR, 0] 9000 @R
Symbolic representation
Entropy Packed using UPXN Symbals of UPXN packer
-] T T T l 100N =" F-_»;;kig-i_;—':‘-ﬂ- e R TR
i & ¥ 3 3 = " i3
4 [&
100k f
W .!
ald /
| LOHY - ||
| I calc.ene caleexe i f)=100me —
| freecell.ene —w 1w Kkl freecell,exe @i O0KF —=— |
1K mshearis.cxe u J mishearts, cxe = L0
s e axe 5 A ek k= TN
note| one ¥ notepad exe g =100
o telnet.exe i i | belnetexe pEE=LO000 —=

30,000 1300000 150,000 JMFP - 3,000 6,000 2000 (B

Results of single-layer packed malware detection

We conducted the experiments using 326 single-layer packed malware executables
classified into four classes

We can classify 89% of the single-layer packed malware into classes of known pac
king algorithms (classes A, B, and C), and the remaining 11% into the class of unkn
own packing algorithms

Packed Win32 Tdss.c.exe Packed Win32 NSAnti.ak.exe
Entropy Entropy
6 T T i ; 6 T T T T -
51 \ 15
3 1 3k
2 12F
1t EE—H |
Section 4
0 Section 5 H i i H ectiol ¥
250,000 450,000 650,000 850,000 JMPs N 20,000 40,000 60,000 80,000 100,000 JMPs

o Packed Win32 Klone.bg.exe opfacked Win32 PolyCrypt.n.exe

gnt Iéntrw 2
G Nsitoe i S0 PO | =
e 4
: 3
Classification of o R O P RY B f o
single-layer packed i —

malware g 100,000 200,000

40,000 80,000 120,000 160,000 200,000 JMPs

Results of single-layer packed malware detection

1. The single-layer packed malware

. . Class C: Patterns of packing algorithms Pattern of Tdss.c
pattern of NSanti.ak looks very similar | Clas | _ ‘
. Aspack 84.95%
with the packer patterns of NsPack Molobox 99.98%
(986%) among class A ‘ Class A: Patterns of packing algorithms ‘ Pattern of NSanti.ak ‘
Alternate_EXE 83.57%
2. The single-layer packed malware F5G 86.54%
.. NsPack 98.60%
pattern of Klone.bg looks very similar RLPack 3.030%
to the packer pattern of MPRESS UPXN 81.36%
0 ‘lass B: Patterns of packing algorithms attern of Klone.bg
98%) among class B Class B: P [packing algoritl P [Klone.b
MPRESS 99.98%
) nPack 80.93%
3. The single-layer packed malware Morphine 75.78%
pattern of Tdss.c has a Slmllarlty with Detection of packing algorithms from packed malware

the packer pattern of Molebox
(99.98%) among class C

Re-packing or Multi-layer Pac
king Algorithm Detection

Re-packing and multi-layer packing algorithm

detection

The one more idea of this thesis is to measure the entropy values while unpacking r
e-packed or multi-layer packed executables

v
Training /
Packed PE | | single-layer | . Parser ! Mealsure fe"t"ohpy L, Symbolic Symbolic pattern of
packed "| sections of PE [] V@lueofeac representation single-layer packed, re-
section packed, and multi-layer
packed execut:b_les/
Testing ;
Re-packed and Measure entropy - Symbolic pattern of
Packed PE " Symbolic single-layer packed, re-

A 4

v

multi-layer packed value or each

. representation
executable parser section

packed, and multi-layer
packed executables

Compare
pattern

A 4

NO

Classification
of packer

Re-packing or multi-layer packing algorithm detection method.

Classier for re-packing and multi-layer packing

algorithms

We classified re-packing or multi-layer packing algorithms in the five classes based
on their graphically visualized patterns, including:

New class

Increasing class

Decreasing class

Combination class

Constant class

We shows the fidelity performance of experiments on the single-layer packed, re-pa
cked, or multi-layer packed executables using

— Aspack

— Alternate EXE

— nPack

— NsPack
— RLPack
VMProtect packing algorithms

Classier for re-packing and multi-layer packing

algorithms

Single-Layer Packer Re-Packer F(z,y)
Alternate_Exe Alternate_Exe 4 Alternate_Exe 0.9920
nPack nPack + nPack 0.990%

NsPack NsPack + NsPack (.0082
RLPack RLPack + RLPack 0.9014
VMProtect VMProtect + VMProtect (0.9999
Single-Layer Packer Multi-Layer Packer F(x,y)
Aspack Section 1 0.9949
NsPack Section 0 0.9821
NsPack Section 1 0.9965
VMProtect Section 4 1.0000
RLPack Section 1 1.0000
VMProtect Section 3 1.0000
VMProtect Section 1 1.0000
NsPack Section 0 0.9961
VMProtect Section 1 1.0000
RLPack Section 0 0.9908

Fidelity similarity for re-packing and
multi-layer packing algorithms

Evaluation 2: Re-packing and multi-layer packing algori

thms detection

* The dataset used in this experiment contains six benign executables for
packing algorithms
* 2196 re-packed and multi-layer packed benign executables
* 19 popular packers

In this experiment the Experimental
. Packers
dataset contains result

We used popular ,
High accuracy

ilti-layer benig 19 pack
PEEEE of 95.35%

packed executables in the experiments

Evaluation 2: Re-packing and multi-layer packing algori

thms detection

4 1. 2. 3. 4. 5. [N T B, B 10.
™ FIRET PACKER
PACKERS Alternate Exe FSGE RLPack MNsPack UPXN @ UPX-T MPRESS Morphine nPack Themida
' . 1. Alternate_Exe v2.000 * Fluibesd Fluilescl Friled Fniled Friled Fluilscl Friled Friled Fniled
® Y()da S C[’yptor paCklng 2. FSG v2.0 Fniled Fuiled Fhiled Failed Foiled Foied Failed Fniled Foled Foied
3. RLPack v1.2 u Fluibesd * Friled u & Fluilscl Friled | &
N d. MNePack v3.7 u | | L | * u u | | Friled Friled &
algorlthl N can re-paCk or 5. UPXN v30 Faled Failed Fhiled Failed Foded Faied Failed Fuiled Fuded Faied
4 @ UPX-T v1.0 Flniled Fimilescl Finilesd Friled Fniled Fniled Fuilexd Fuiled Fniled Fniled
lt 1 k 7. H MPRESS v1.27T Filed Fuiled Fiiled Failed]] Filedd Fnilesd Filesd]
mu 1- ayer pac an 8. E Morphine v1.6 Fdlel Fluiled Fliliel Friled Fniled Fniled Fuilbec Fniled Fhiled Fniled
a. E nPack v1.1.300. 2006 u Fluibesd Fluilescl Friled u u | | Friled] &
- 1. - Themida v2.4 Filescl #* #* 3 u Friled Fluilscl Friled & *
eXGCUtable, re paCked Or 11. E VM Protect v1.7 Filescl Fluibesd #* 3 Fniled u #* Friled Friled Fniled
. 12 .-: Aspack v2.IE u Fluibesd Fluilescl 3 u u | | Friled | Fniled
multl_layer packed 13, 2 Molebox v1.6.1] Fieilescl #* £]] #* Fuiled o o
4. ® Petite v2.3 Filescl Fluibesd Fluilescl Friled Fniled Friled Fluilscl Friled Friled
15 ASProtect v.1.23 u Fluibesd Fluilescl Friled u u Fluilscl Friled & &
executables Would n()t WOI’k 14. MEW v1.2 Finile] Foiled W Fuiled ~ Foied Fded [] Fuiled | =
I7. Yoda's Crypter v1.3 #* #* Fluilescl Friled u u | | Friled & &
13, PELock vZ2.0 Filescl | | Fluilescl Friled u u Fluilscl Friled & &
14, tELock {198 Filescl Fluibesd Fluilescl Friled u u Fluilscl Friled | &
11. 12, 13, 14. 15. 18. i7. 18. 18.
N FIRST PACKER
PACKERS VMProtect Aspack Molebox Petite ASProtect MEW Yoda'sCrypter PELock tELock
1. Alternate_Exe +2.0000 Faulexd Faled Faled Frnlesd Foulesd Fonlesd * Falesd Fauled
2. F8G ~2.0 | | Faled | | Frnlesd Foulesd Fonlesd * Falesd Fauled
1. RLPack +v1.2 * |] * |] |] Failed | | |] |
1. NsPack v3.7 * * *] [] [] Failed [| | |
5. UPXN ~301 Failed Faaled Failed Failed Failed Failed Failed Failed Failed
B. = UPXAT ~1.0 Failed Faaled Failed Failed Failed Failed Failed Failed Failed
7. E MPRESS ~1.2T * Faled * Frnlesd Foulesd Fonlesd Fauled | | Fauled
g, E Muorphine v1.8 Faulexd Faled Faled Frnlesd Foulesd Fonlesd Fauled Falesd Fauled
0. = nPack v1.1.300.20406 Faulexd Faled * Frnlesd * Fonlesd * * Fauled
10. = Themida v2.4 [| Failed o | | o Falesd o r *
11. g VMProtect v1.7 # Faled Faled * * Fonlesd Fauled Falesd Fauled
12. @ Aspack v2.28 | | # * | | | | Fonlesd * * Fauled
13. :l Moaolebox v2.8.1 | | * Failed [| * * * * *
M 14, 7 Petite v2.3 Faulexd Faled Faled Frnlesd Foulesd Fonlesd * * Fauled
Experlmental results Of paCked 15. ASProtect v.1.23 * Faled * Frnlesd Foulesd Fonlesd * Falesd | |
. . 16. MEW ~1.2 | | Failed * [| [| * * [| Failed
executables with the single-layer 7 Yodu's Cryptervi3 W x x x x = . x
. 18. PELuock +2.0 | | * * * | | Fonlesd * Falesd *
packers re-packers and multl-layer 19, tELock +0.98 u Failed * n Failesd n * * Failed
9 2
is re-packed benym executables. For example: Alternate Exe + Alternate_Exe; & is two way packed multi-layer packed executables. For
eample: NePack + Aspack and Aspack 4+ NsPack; B i one way packed multi-lver packed executables. For examples Alternate Exe +
; B P ; ¥ yer | ;

MsPack; Failed is executable not packed with re-packing or mults-layer packing algorithm.

Results of experiments using SAX and entropy

analysis

* We packed each executable one time, two times, and combination times
using 19 packing algorithms

* We extract entropy pattern of packed notepad.exe by 19 packing algorithms
* We scale entropy pattern of each packed notepad executable

* We calculate the number of symbols ¢() for converting using SAX

1. 2. 3. 4. 5. 6. 7 8. !]

N FIRST PACKER
PACKERS Alternate_Exe RLPack NsPack nPack Themida VMProtect Aspack MEW Yoda'sCrypter

1. : Akﬂl‘l]ﬂfﬂ_!‘;x@ . Failed Failed Failed Failed Failed Failed Failed *.,"ljnt exe
2. E RLPack =} [} Failed 1= * /1ot exe * n Failad El
3. Q NsPack n n L] Failed %/ not exe * * | | Fuiled
i. E nPack n Failed Failed ¢ *:"li it exe Failed Failed Failad *:‘lll'l axe
5. - Themida Failed * * * /not exe + W/not exe Failed Failed * /not exe
fi 7 VMProtect Failad * * Failad Failed 3 Failed Failad Failed
T. 8 Aspack B/not exe Failed % /not exe | Failed B/not exe] Failed * /mot exe
. 3 MEW Failed o Failed | | n o] Fuailed] % /not exe
9 wm Yoda's ('r_vpmr *.."lu it exe Failed Failed *_v"ll-.lf oxe *;"Ilnf axe ._.‘lllt it exe *_."llt it exe *_."lluf oe ..."llll' e

iz re-packed berdgn executables. For example: Alternate_Exe + Alternate_Exe; % is two way packed mmlti-layer packed executabks. For example: NsPack
+ Aspack and Aspack 4+ NsPack; B is one way padced multi-layer packed execqutables. For example: Alternate_Exe 4 NsPack; Failled is executable not
packed with re-packing or multi-hyer packing algorithm.

Experimental results of the re-packing and multi-layer packing algorithms.

Results of experiments using SAX and entropy

analysis

We used features of single-layer packed, re-packed, or multi-layer packed executab
les to create the operation of each re-packed or multi-layer packed executables, suc

h as

— the number of sections
— the size of the section
— name of the section

Next, we found that the nine re-packed or multi-layer packed executable's entropy
patterns of 8 packing algorithms

— New class includes MEW, Yoda's Cryptor;
— Increasing class includes Alternate EXE, NsPack, RLPack;

— Decreasing class consists of nPack;

— Combination class consists of VMProtect, Themida and Aspack;

Results of experiments using SAX and entropy

Entropy patterns of single-layer
packed and re-packed executable
of Notepad.exe when a packer is

(a) Alternate EXE;
(b) NsPack;

(¢) RLPack;

(d) nPack;

(e) VMProtect

y-axis 1s entropy values
x-axis 1s JMP”’ instruction
numbers

analysis

Single-layer and Re-packed

Entropy with Alternate_EXE
6 : : :
6
4 RS SRR RASRRHHHHHHHHHHHHHHHHHT
1
ap |
+
ol
|
1
i Alternate_Exe
o Alternate_Exe+Alternate_Exe -
) 20,000 40,000 60,000 80,000 JMP
b. Single-layer and Re-Packed c. Single-layer and Re-Packed
Entropy with NsPack Entropy with RLPack
5 e e 8 e
,\":'H HVII" HHHHHHHHHHHHHH t s HHHHHHHHH HHHHHHHHHHHH
al Mm%w afpr
i
3| A 3
2 "
\
d 1
NsPack RLPack
0 NsPack+NsPack - o i RI.I"ack-*RLPack —>—4‘;
260,000 600,000 760,000 1000,000JMP 260,000 500,000 760,000 1000,000 JMP
d. Single-layer and Re-Packed e. Single-layer and Re-Packed
Eptropy with nPack Entropy with VMProtect
ELM;_‘__HH_H- .
kot W‘—‘.‘__
‘,\.»er) “—:,,M‘ '.‘s. M/H* R r0000000000000000080000000 KA o
4l s 4|
3l 3
2 2
1 1
nPack — VMProtect |
L L i i i nPack+nPack— 0 VMProtect+VMProtect | |
20,000 40,000 60,000 80,000 JMP 50,000 100,000 160,000 200,000 JMP

Results of experiments using SAX and entropy

Entropy patterns of single-layer
packed and multi-layer packed
executable of Notepad.exe using two
packers

(a) NsP or Asp;

(b) NsP and Asp;

(¢) NsP or VMP;

(d) NsP and VMP;

(e) RLP or VMP;

(f) RLP and VMP;

(g) VMP or NsP;

(h) VMP and NsP;

(1) VMP or RLP;

() VMP and RLP

y-axis 1s entropy values
x-axis 1s JMP” instruction numbers

analysis

a. Single-layer Packed with
Aspack or NsPack

b. Multi-layer packed with
Aspack and NsPack

Entropy Entropy
] &
05850353088 sgpsESg Hrie — -+ 1 1 b=
1 1] *
4 s AT i e
i [
vl
3l A E
2
1t 1
a [| oot
100,000 200,000 300,000 M 160,000 300,000 JMP
¢. Single-layer Packed with d. Multi-layer packed with
Entropy NsPack or VMProtect] NsPack and VMProtect
O, oo b et
il g O
al et 4 4
3 Eo
a| il
|
1 1
[WsPack | | n
5 lvwrigiat - | o i . Seotion s
100,000 200,000 200,000 JMP 100,000 200,000 300,000 JMP
e. Single-layer Packed with f. Multi-layer packed with
Entropy RLPack or VMProtect enwopy RLPack and VMProtect
e i
- s.",.fuf»ffw it A R o
4 ST—————— L — b
K] 3 |
2 2
1 1
¥MProtect ‘Se:inn 1 |
% RLPack - 5 Soctlont -
50,000 100,000 160,000 200,000 JMP 50,000 100,000 150,000 200,000.JM

4. Single-layer Packed with
VMProtect or NsPack

h. Multi-layer packed with

Entropy Entropy VMProtect and NsPack
6
: e 3
i e I
1 (R B v
3 a
2| 2
Wl
........ | [gmons
o .

100,000 200,000 300,000 JMP
i. Single-layer Packed with
VMProtect or RLPack

Section1 -
100,000 200,000 300,000 JMP

j- Multi-layer packed with

Entropy Entropy VMProtect and RLPack
4
€ 5
. o st ut R |
ali all” 7
3 2
2 2
1 1
nnnnnnnnnnnn
o o

roteet
60,000 100,000 160,000 200,000 JMP

Section 1«
100,000 200,000 JMP

Results of experiments using SAX and entropy

analysis

N Packing Algorithm T.% F.% A% P% R%

* The average accuracy using re—packe 1. Alternate EXE 96.0 1.2 99.0 9388 06.3
: 0 2. ASPACK 96.0 40 975 960 95.2

rs and multi-layer packer are 98.5% £ 3. MEW 100.0 0.0 100.0 100.0 100.0
and 97.5%, respectlvely £ 4. NPACK 1000 0.8 984 099.2 100.0

% 5. NSPACK 985 23 967 977 955

£ 6. RLPACK 958 42 970 958 90.8

7. THEMIDA 960 1.9 990 981 923

* The accuracy of both VMProtect and 8 VMPROTECT 1000 0.0 1000 1000 100.0
: : AVERAGE 97.8 1.8 985 982 96.2

MEW re-packing and multi-layer pac N PACKERS T % A% P R%
king algorithms 1s 100% E 1. Alternate EXE 93.7 3.0 972 969 963

S 2. ASPACK 93.0 20 968 97.0 96.3

& 3. MEW 945 1.3 988 086 08.0

o _ § 4. NPACK 950 55 973 045 06.8

* The minimum accuracy is 95.8%, wh & 5. NsPACK 085 23 050 OT.7 048
: . = 6. RLPACK 93.0 35 958 964 958

ich relates to the RLPack multi-layer = - tyenvma 060 05 981 D95 DG

= 8. VMPROTECT 100.0 0.0 100.0 100.0 100.0

packing algorithm

AVERAGE 95.5 2.3 97.5 97.7 96.8

Conclusion

* This is the first work to classify single-layer packed, re-packed and multi-layer pac
ked executables using entropy pattern of packing algorithms

* We presented a novel technique for the detection of single-layer packing,
re-packing or multi-layer packing algorithms using
— SAX representations of the entropy values
— The similarities in the sequence of SAX symbols in each packer

* We produced a highly accurate single-layer packer, re-packer and multi-layer packe
r classification system on real life data

Future work: We will extract symbolic patterns from new packed malware, examine r
e-packed or multi-layer packed malware packing algorithms

* To use additional supervised classification methods for re-packer and multi-layer pa
cker classification and detection

Thank you for listening!

Contact: munkh0724@gmail.com
munkhbayar@XKkorea.ac.kr

	Slide 1
	Contents
	Introduction
	Motivation
	Related Works
	Related works 1/3
	Related works 2/3
	Related works 3/3
	Main Mechanism
	Proposed main mechanism
	1. Measure Entropy Pattern
	1.1. Entropy Analysis
	2. Convert Symbolic Representation
	2.1. Symbolic Representation
	2.2. Symbolic Aggregate approXimation (SAX)
	2.3. SAX analysis
	3. Classification
	3.1. Classification method
	Single-layer Packing Algorithm Detection
	Evaluation 1: Single-layer packing algorithm detection
	Evaluation 1: Single-layer packing algorithm detection
	Slide 22
	Slide 23
	Slide 24
	Results of single-layer packed malware detection
	Results of single-layer packed malware detection
	Re-packing or Multi-layer Packing Algorithm Detection
	Re-packing and multi-layer packing algorithm detection
	Classier for re-packing and multi-layer packing algorithms
	Classier for re-packing and multi-layer packing algorithms
	Slide 31
	Slide 32
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Results of experiments using SAX and entropy analysis
	Conclusion
	Slide 39

